Chapter 8: Further Applications of Trigonometry

In this chapter, we will explore additional applications of trigonometry. We will begin with an extension of the right triangle trigonometry we explored in chapter 5 to situations involving non-right triangles. As we have seen, many relationships cannot be represented using the Cartesian coordinate system, so we will explore the polar coordinate system and parametric equations as alternative systems for representing relationships. In the process, we will introduce complex numbers and vectors, two important mathematical tools we use when analyzing and modeling the world around us.

Section 8.1 Non-right Triangles: Law of Sines and Cosines ... 308
Section 8.2 Polar Coordinates ... 319
Section 8.3 Polar Form of Complex Numbers ... 329
Section 8.4 Vectors ... 338
Section 8.5 Parametric Equations .. 348

Section 8.1 Non-right Triangles: Law of Sines and Cosines

So far we have spent our time studying right triangles in and out of a circle. Although right triangles allow us to solve many applications, it is more common to find scenarios where the triangle we are interested in does not have a right angle.

Two radar stations located 20 miles apart both detect a UFO between them. The angle of elevation measured by the first station is 35 degrees. The angle of elevation measured by the second station is 15 degrees. What is the altitude of the UFO?

In drawing this picture, we see that the triangle formed by the UFO and the two stations is not a right triangle. Of course, in any triangle we could draw an altitude, a perpendicular line from one point or corner to the base across from it (in or outside of the triangle), forming two right triangles, but it would be nice to have methods for working directly with non-right triangles. In this section we will expand upon the right triangle trigonometry we learned in chapter 5, and adapt it to non-right triangles.

Law of Sines

Given an arbitrary non-right triangle, we can drop an altitude, which we temporarily label \(h \), to create two right triangles.

Using the right triangle relationships,

\[
\sin(\alpha) = \frac{h}{b} \quad \text{and} \quad \sin(\beta) = \frac{h}{a}.
\]
Solving both equations for \(h \), we get \(b \sin(\alpha) = h \) and \(a \sin(\beta) = h \). Since the \(h \) is the same in both equations, we establish \(b \sin(\alpha) = a \sin(\beta) \). Dividing, we conclude that
\[
\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b}
\]

Had we drawn the altitude to be perpendicular to side \(b \) or \(a \), we could similarly establish
\[
\frac{\sin(\alpha)}{a} = \frac{\sin(\gamma)}{c} \quad \text{and} \quad \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}
\]

Collectively, these relationships are called the Law of Sines.

Definition

Law of Sines

Given a triangle with angles and sides opposite labeled as shown, the ratio of sine of angle to length of side opposite will always be equal, or symbolically,
\[
\frac{\sin(\alpha)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}
\]

For clarity, we call side \(a \) the corresponding side of angle \(\alpha \). Similarly, we call angle \(\alpha \), the corresponding angle of side \(a \). Likewise for side \(b \) and angle \(\beta \), and for side \(c \) and angle \(\gamma \).

When we use the law of sines, we use any pair of ratios as an equation. In the most straightforward case, we know two angles and one of the corresponding sides.

Example 1

In the triangle shown here, solve for the unknown sides and angle.

Solving for the unknown angle is relatively easy, since the three angles must add to 180 degrees. From this, we can determine that \(\gamma = 180^\circ - 50^\circ - 30^\circ = 100^\circ \).

To find an unknown side, we need to know the corresponding angle, and we also need another complete ratio.

Since we know the angle 50° and its corresponding side, we can use this for one of the two ratios. To look for side \(b \), we would use its corresponding angle, 30°.
\[
\frac{\sin(50^\circ)}{10} = \frac{\sin(30^\circ)}{b} \quad \text{Multiply both sides by } b
\]
\[
b \frac{\sin(50^\circ)}{10} = \sin(30^\circ) \quad \text{Divide, or multiply by the reciprocal, to solve for } b
\]
\[
b = \sin(30^\circ) \frac{10}{\sin(50^\circ)} \approx 6.527
\]

Similarly, to solve for side \(c\), we set up the equation
\[
\frac{\sin(50^\circ)}{10} = \frac{\sin(100^\circ)}{c}
\]
\[
c = \sin(100^\circ) \frac{10}{\sin(50^\circ)} \approx 12.856
\]

Example 2
Find the elevation of the UFO from the beginning of the section.

To find the elevation of the UFO, we first find the distance from one station to the UFO, such as the side \(a\) in the picture, then use right triangle relationships to find the height of the UFO, \(h\).

Since the angles in the triangle add to 180 degrees, the unknown angle of the triangle must be \(180^\circ - 15^\circ - 35^\circ = 130^\circ\). This angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship:
\[
\frac{\sin(130^\circ)}{20} = \frac{\sin(35^\circ)}{a} \quad \text{Multiply by } a
\]
\[
a \frac{\sin(130^\circ)}{20} = \sin(35^\circ) \quad \text{Divide, or multiply by the reciprocal, to solve for } a
\]
\[
a = \frac{20 \sin(35^\circ)}{\sin(130^\circ)} \approx 14.975 \quad \text{Simplify}
\]

The distance from one station to the UFO is 14.975 miles.

Now that we know \(a\), we can use right triangle relationships to solve for \(h\).
\[
\sin(15^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{h}{a} = \frac{h}{14.975} \quad \text{Solve for } h
\]
\[
h = 14.975 \sin(15^\circ) \approx 3.876
\]

The UFO is flying at an altitude of 3.876 miles.
In addition to solving triangles in which two angles are known, the law of sines can be used to solve for an angle when two sides and one corresponding angle are known.

Example 3

In the triangle shown here, solve for the unknown sides and angles.

In choosing which pair of ratios from the Law of Sines to use, we always want to pick a pair where we know three of the four pieces of information in the equation. In this case, we know the angle 85° and its corresponding side, so we will use that ratio. Since our only other known information is the side with length 9, we will use that side and solve for its angle.

$$\frac{\sin(85^\circ)}{12} = \frac{\sin(\beta)}{9}$$

Isolate the unknown

$$\frac{9\sin(85^\circ)}{12} = \sin(\beta)$$

Use the inverse sine to find a first solution

Remember when we use the inverse function that there are two possible answers.

$$\beta = \sin^{-1}\left(\frac{9\sin(85^\circ)}{12}\right) \approx 48.3438^\circ$$

By symmetry we find the second possible solution

$$\beta = 180^\circ - 48.3438^\circ = 131.6562^\circ$$

Since we have a picture of the desired triangle, it is fairly clear in this case that the desired angle is the acute value, 43.3438°.

With a second angle, we can now easily find the third angle, since the angles must add to 180°, so $\alpha = 180^\circ - 85^\circ - 43.3438^\circ = 51.6562^\circ$.

Now that we know α, we can proceed as in earlier examples to find the unknown side a.

$$\frac{\sin(85^\circ)}{12} = \frac{\sin(51.6562^\circ)}{a}$$

$$a = \frac{12\sin(51.6562^\circ)}{\sin(85^\circ)} \approx 9.4476$$

Notice that in the problem above, when we use Law of Sines to solve for an unknown angle, there can be two possible solutions. This is called the **ambiguous case**. In the ambiguous case we may find that a particular set of given information can lead to 2, 1 or no solution at all. However, when a picture of the triangle or suitable context is available, we can determine which angle is desired. When such information is not available, there may simply be two possible solutions, or one solution might not be possible, if the ratios are impossible.
Try it Now

1. Given \(\alpha = 80^\circ, a = 120, b = 121 \), find the corresponding & missing side and angles. If there is more than one possible solution, show both.

Example 4

Find all possible triangles if one side has length 4 with an angle opposite of 50° and a second side with length 10.

Using the given information, we can look for the angle opposite the side of length 10.

\[
\frac{\sin(50^\circ)}{4} = \frac{\sin(\alpha)}{10} \\
\sin(\alpha) = \frac{10 \sin(50^\circ)}{4} \approx 1.915
\]

Since the range of the sine function is \([-1, 1]\), it is impossible for the sine value to be 1.915. There are no triangles that can be drawn with the provided dimensions.

Example 5

Find all possible triangles if one side has length 6 with an angle opposite of 50° and a second side with length 4.

Using the given information, we can look for the angle opposite the side of length 4.

\[
\frac{\sin(50^\circ)}{6} = \frac{\sin(\alpha)}{4} \\
\sin(\alpha) = \frac{4 \sin(50^\circ)}{6} \approx 0.511
\]

Use the inverse to find one solution

\[\alpha = \sin^{-1}(0.511) = 30.710^\circ \]

By symmetry there is a second possible solution

\[\alpha = 180^\circ - 30.710^\circ = 149.290^\circ \]

If we use the angle of 30.710°, the third angle would be 180° – 50° – 30.710° = 99.290°

If we use the angle of 149.290°, the third angle would be 180° – 50° – 149.290° = –19.29°, which is impossible, so the previous triangle is the only possible one.

Try it Now

2. Given \(\alpha = 80^\circ, a = 100, b = 10 \) find the corresponding & missing side and angles. If there is more than one possible solution, show both.
Law of Cosines

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles. How far from port is the boat?

Unfortunately, while the Law of Sines lets us address many non-right triangle cases, it does not allow us to address triangles where the one known angle is included between two known sides, which means it is not a corresponding angle. For this, we need another relationship.

Given an arbitrary non-right triangle, we can drop an altitude, which we temporarily label h, to create two right triangles. We will divide the base b into two pieces, one of which we will temporarily label x. From this picture, we can establish the right triangle relationship

$$\cos(\alpha) = \frac{x}{c}, \text{ or equivalently, } x = c \cos(\alpha)$$

Using the Pythagorean Theorem, we can establish

$$ (b - x)^2 + h^2 = a^2 \quad \text{and} \quad x^2 + h^2 = c^2 $$

Both of these equations can be solved for h^2

$$ h^2 = a^2 - (b - x)^2 \quad \text{and} \quad h^2 = c^2 - x^2 $$

Since these are both equal to h^2, we can set the expressions equal

$$ c^2 - x^2 = a^2 - (b - x)^2 \quad \text{Multiply out the right} $$

$$ c^2 - x^2 = a^2 - (b^2 - 2bx + x^2) \quad \text{Simplify} $$

$$ c^2 - x^2 = a^2 - b^2 + 2bx - x^2 $$

$$ c^2 = a^2 - b^2 + 2bx \quad \text{Isolate } a^2 $$

$$ a^2 = c^2 + b^2 - 2bx \quad \text{Substitute in } c \cos(\alpha) = x \text{ from above} $$

$$ a^2 = c^2 + b^2 - 2bc \cos(\alpha) $$

This result is called the Law of Cosines. Depending upon which side we dropped the altitude down from, we could have established this relationship using any of the angles. The important thing to note is that the right side of the equation involves the angle and sides adjacent to that angle – the left side of the equation contains the corresponding angle.
Definition

Law of Cosines

Given a triangle with angles and sides opposite labeled as shown,

\[a^2 = c^2 + b^2 - 2bc \cos(\alpha) \]
\[b^2 = a^2 + c^2 - 2ac \cos(\beta) \]
\[c^2 = a^2 + b^2 - 2ab \cos(\gamma) \]

Notice that if one of the angles of the triangle is 90 degrees, \(\cos(90^\circ) = 0 \), so the formula

\[c^2 = a^2 + b^2 - 2ab \cos(90^\circ) \]

Simplifies to

\[c^2 = a^2 + b^2 \]

You should recognize this as the Pythagorean Theorem. Indeed, the Law of Cosines is sometimes called the **General Pythagorean Theorem**, since it extends the Pythagorean Theorem to non-right triangles.

Example 6

Returning to our question from earlier, suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles. How far from port is the boat?

The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle, \(180^\circ - 20^\circ = 160^\circ \).

With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle – the distance from the boat to port.

\[x^2 = 8^2 + 10^2 - 2(8)(10) \cos(160^\circ) \]

Evaluate the cosine and simplify

\[x^2 = 314.3508 \]

Square root both sides

\[x = \sqrt{314.3508} = 17.730 \]

The boat is 17.73 miles from port.

Example 7

Find the unknown side and angles of this triangle.

Notice that we don’t have both pieces of any side / angle pair, so Law of Sines would not work in this triangle.
Since we have the angle included between the two known sides, we can turn to Law of Cosines. Since the left side of any of Law of Cosines equations is the side opposite the known angle, the left side will involve the side x. The other two sides can be used in either order.

$$x^2 = 10^2 + 12^2 - 2(10)(12)\cos(30^\circ)$$
$$x^2 = 10^2 + 12^2 - 2(10)(12)\frac{\sqrt{3}}{2}$$
Simplify

$$x^2 = 244 - 120\sqrt{3}$$
Take the square root

$$x = \sqrt{244 - 120\sqrt{3}} \approx 6.013$$

Now that we know an angle and the side opposite, we can use the Law of Sines to fill in the remaining angles of the triangle. Solving for angle θ,

$$\frac{\sin(30^\circ)}{6.013} = \frac{\sin(\theta)}{10}$$
Use the inverse sine

$$\sin(\theta) = \frac{10\sin(30^\circ)}{6.013}$$
$$\theta = \sin^{-1}\left(\frac{10\sin(30^\circ)}{6.013}\right) = 56.256^\circ$$

Since this angle appears acute in the picture, we don’t need to find a second solution.

Now that we know two angles, we can find the last:

$$\phi = 180^\circ - 30^\circ - 56.256^\circ = 93.744^\circ$$

In addition to solving for the missing side opposite one known angle, the Law of Cosines allows us to find the angles of a triangle when we know all three sides.

Example 8

Solve for the angle α in the triangle shown.

Using the Law of Cosines,

$$20^2 = 18^2 + 25^2 - 2(18)(25)\cos(\alpha)$$
Simplify

$$400 = 949 - 900\cos(\alpha)$$
$$-549 = -900\cos(\alpha)$$
$$\frac{-549}{-900} = \cos(\alpha)$$

$$\alpha = \cos^{-1}\left(\frac{-549}{-900}\right) = 52.410^\circ$$
3. Given $\alpha = 25^\circ, b = 10, c = 20$ find the corresponding side and angles.

Notice that since the cosine inverse can return an angle between 0 and 180 degrees, there will not be any ambiguous cases when using Law of Cosines to find an angle.

Example 9

On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is done by a process called triangulation, which works by using the distance from two known points. Suppose there are two cell phone towers within range of you, located 6000 feet apart along a straight highway that runs east to west, and you know you are north of the highway. Based on the signal delay, it can be determined you are 5050 feet from the first tower, and 2420 feet from the second. Determine your position relative to the tower to the west and determine how far you are from the highway.

For simplicity, we start by drawing a picture and labeling our given information. Using the Law of Cosines, we can solve for the angle θ.

$$2420^2 = 6000^2 + 5050^2 - 2(5050)(6000)\cos(\theta)$$
$$2420^2 = 36000000 + 25502500 - 606000000\cos(\theta)$$
$$5856400 = 61501500 - 606000000\cos(\theta)$$
$$-554646100 = -606000000\cos(\theta)$$
$$\cos(\theta) = \frac{-554646100}{-606000000} = 0.9183$$
$$\theta = \cos^{-1}(0.9183) = 23.328^\circ$$

Using this angle, we could then use right triangles to find the position of the cell phone relative to the western tower.

$$\cos(23.328^\circ) = \frac{x}{5050}$$
$$x = 5050\cos(23.328^\circ) \approx 4637.2 \text{ feet}$$

$$\sin(23.328^\circ) = \frac{y}{5050}$$
$$y = 5050\sin(23.328^\circ) \approx 1999.8 \text{ feet}$$

You are 5050 ft from the tower and 23.328° North of East. Specifically, you are 4637.2 feet East and 1999.8 ft North of the western tower.
Note that if you didn’t know if you were north of both towers, our calculations would have given two possible locations, one north of the highway and one south. To resolve this ambiguity in real world situations, locating a position using triangulation requires a signal from a third tower.

Example 10

To measure the height of a hill, a woman measures the angle of elevation to the top of the hill to be 24 degrees. She then moves back 200 feet and measures the angle of elevation to be 22 degrees. Find the height of the hill.

As with many problems of this nature, it will be helpful to draw a picture.

![Diagram](image)

Notice there are three triangles formed here – the right triangle including the height h and the 22 degree angle, the right triangle including the height h and the 24 degree angle, and the non-right obtuse triangle including the 200 ft side. Since this is the triangle we have the most information for, we will begin with it. It may seem odd to work with this triangle since it does not include the desired side h, but we don’t have enough information to work with either of the right triangles yet.

We can find the obtuse angle of the triangle, since it and the angle of 24 degrees complete a straight line – a 180 degree angle. The obtuse angle must be $180^\circ - 24^\circ = 156^\circ$. From this, we can determine the last angle is 2°. We know a side, 200 ft, and its corresponding angle, so by introducing a temporary variable x for one of the slant lengths, we can use Law of Sines to solve for this length x.

![Diagram](image)

\[
\frac{x}{\sin(22^\circ)} = \frac{200}{\sin(2^\circ)} \quad \text{Setting up the law of sine}
\]

\[
x = \sin(22^\circ) \cdot \frac{200}{\sin(2^\circ)} \quad \text{isolating the x value}
\]

\[
x = 2146.77 \text{ ft}
\]
Now that we have side x, we can use right triangle properties to solve for h.

$$\sin(24^\circ) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{h}{x} = \frac{h}{2146.77}$$

$$h = 2146.77 \sin(24^\circ) \approx 873.17 \text{ ft}$$

The hill is 873.17 ft high.

Important Topics of This Section

- **Law of Sines**
 - Solving for sides
 - Solving for angles
 - Ambiguous case, 0, 1 or 2 solutions
- **Law of Cosine**
 - Solving for sides
 - Solving for angles
- **General Pythagorean Identity**

Try it Now Answers

1. 1st possible solution $\gamma = 16.8^\circ$, 2nd solution $\gamma = 3.2^\circ$

 If we were given a picture or triangle it may be possible to eliminate one of these

2. $\beta = 5.65^\circ$, $\gamma = 94.35^\circ$, $c = 101.25$

3. $\beta = 21.1^\circ$, $\gamma = 133.9^\circ$, $a = 11.725$
Section 8.2 Polar Coordinates

The coordinate system we are most familiar with is called the Cartesian coordinate system, a rectangular plane quartered by the horizontal and vertical axis.

In some cases, this coordinate system is not the most useful way to describe points in the plane. In earlier chapters, we often found the Cartesian coordinates of a point on a circle at a given angle. Sometimes, the angle and distance from the origin is the more useful information.

Definition

Polar Coordinates
The polar coordinates of a point are an ordered pair, (r, θ), where r is the distance from the point to the origin, and θ is the angle measured in standard position.

Notice that if we were to “grid” the plane for polar coordinates, it would look like the plane to the right, with circles at incremental radii, and lines drawn at incremental angles.

Example 1
Plot the polar point $(3, \frac{5\pi}{6})$

This point will be a distance of 3 from the origin, at an angle of $\frac{5\pi}{6}$. Plotting this,

Example 2
Plot the polar point $\left(-2, \frac{\pi}{4}\right)$

While normally we use positive r values, occasionally we run into cases where r is negative. On a regular number line, we measure positive values to the right and negative values to the left. We will plot this point similarly. To start we rotate to an angle of $\frac{\pi}{4}$.

Moving this direction, into the first quadrant, would be positive r values. For negative r values, we move the opposite direction, into the third quadrant. Plotting this,
Note the resulting point is the same as the polar point \(\left(2, \frac{5\pi}{4} \right) \).

Try it Now

1. Plot the following points and label them
 a. \(A = \left(3, \frac{\pi}{6} \right) \)
 b. \(B = \left(-2, \frac{\pi}{3} \right) \)
 c. \(C = \left(4, \frac{3\pi}{4} \right) \)

Converting Points

To convert between polar coordinates and Cartesian coordinates, we recall the relationships we developed back in chapter 5.

Definition

To convert between Polar \((r, \theta)\) and Cartesian \((x, y)\) coordinates, we use the relationships

\[
\begin{align*}
\cos(\theta) &= \frac{x}{r} & x &= r \cos(\theta) \\
\sin(\theta) &= \frac{y}{r} & y &= r \sin(\theta) \\
\tan(\theta) &= \frac{y}{x} & x^2 + y^2 &= r^2
\end{align*}
\]

From these relationships and our knowledge of the unit circle, if \(r = 1\) and \(\theta = \frac{\pi}{3}\), the polar coordinates would be \((r, \theta) = \left(1, \frac{\pi}{3} \right) \), and the corresponding Cartesian coordinates \((x, y) = \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right) \).

Remembering your unit circle values will come in very handy as you convert between Cartesian and Polar coordinates.
Example 3

Find the Cartesian coordinates of a point with polar coordinates \((r, \theta) = \left(5, \frac{2\pi}{3}\right)\)

To find the \(x\) and \(y\) coordinates of the point,

\[
x = r \cos(\theta) = 5 \cos\left(\frac{2\pi}{3}\right) = 5 \left(-\frac{1}{2}\right) = -\frac{5}{2}
\]

\[
y = r \sin(\theta) = 5 \sin\left(\frac{2\pi}{3}\right) = 5 \left(\frac{\sqrt{3}}{2}\right) = \frac{5\sqrt{3}}{2}
\]

The Cartesian coordinates are \(\left(-\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)\)

Example 4

Find the polar coordinates of the point with Cartesian coordinates \((-3, -4)\)

We begin by finding the distance \(r\) using the Pythagorean relationship \(x^2 + y^2 = r^2\)

\((-3)^2 + (-4)^2 = r^2\)

\[9 + 16 = r^2\]

\[r^2 = 25\]

\[r = 5\]

Now that we know the radius, we can find the angle using any of the three trig relationships. Keep in mind that any of the relationships will produce two solutions on the circle, and we need to consider the quadrant to determine which solution to accept.

Using the cosine, for example:

\[
\cos(\theta) = \frac{x}{r} = \frac{-3}{5}
\]

\[
\theta = \cos^{-1}\left(-\frac{3}{5}\right) = 2.214 \quad \text{By symmetry, there is a second solution at}
\]

\[
\theta = 2\pi - 2.214 = 4.069
\]

Since the point \((-3, -4)\) is located in the 3rd quadrant, we can determine that the second angle is the one we need. The polar coordinates of this point are \((r, \theta) = (5, 4.069)\)

Try it Now

2. Convert the following
 a. Convert Polar coordinates \((r, \theta) = (2, \pi)\) to \((x, y)\)
 b. Convert Cartesian coordinates \((x, y) = (0, -4)\) to \((r, \theta)\)
Polar Equations
Just as a Cartesian equation like $y = x^2$ describes a relationship between x and y values on a Cartesian grid, a polar equation can be written describing a relationship between r and θ values on the polar grid.

Example 5
Sketch a graph of the polar equation $r = \theta$

The equation $r = \theta$ describes all the points for which the radius r is equal to the angle. To visualize this relationship, we can create a table of values.

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>$\pi/4$</th>
<th>$\pi/2$</th>
<th>$3\pi/4$</th>
<th>π</th>
<th>$5\pi/4$</th>
<th>$3\pi/2$</th>
<th>$7\pi/4$</th>
<th>2π</th>
</tr>
</thead>
<tbody>
<tr>
<td>r</td>
<td>0</td>
<td>$\pi/4$</td>
<td>$\pi/2$</td>
<td>$3\pi/4$</td>
<td>π</td>
<td>$5\pi/4$</td>
<td>$3\pi/2$</td>
<td>$7\pi/4$</td>
<td>2π</td>
</tr>
</tbody>
</table>

We can plot these points on the plane, and then sketch a curve that fits the points. The resulting graph is a spiral.

Notice that while y is not a function of x, r is a function of θ. Polar functions allow us a functional representation for many relationships in which y is not a function of x.

Although it is nice to see polar equations on polar grids, it is more common for polar graphs to be graphed on the Cartesian coordinate system, and so, the remainder of the polar equations will be graphed accordingly.

The spiral graph above on a Cartesian grid is shown here.

Example 6
Sketch a graph of the polar equation $r = 3$

Recall that when a variable does not show up in the equation, it is saying that it does not matter what value that variable has; the output for the equation will remain the same.

For example, the Cartesian equation $y = 3$ describes all the points where $y = 3$, no matter what the x values are, producing a horizontal line.

Likewise, this polar equation is describing all the points at a distance of 3 from the origin, no matter what the angle is, producing the graph of a circle.
The normal settings on graphing calculators and software graph on the Cartesian coordinate system with \(y \) being a function of \(x \), where the graphing utility asks for \(f(x) \), or simply \(y = \).

To graph polar equations, you may need to change the mode of your calculator to Polar. You will know you have been successful in changing the mode if you now have \(r \) as a function of \(\theta \), where the graphing utility asks for \(r(\theta) \), or simply \(r = \).

Example 7

Sketch a graph of the polar equation \(r = 4 \cos(\theta) \), and indicate how long it takes to complete one cycle.

While we could again use technology to find points and plot this, we can also turn to technology to help us graph it. Using technology, we produce the graph shown here, a circle touching the origin.

Since this graph appears to close a loop and repeat itself, we might ask what interval of \(\theta \) values draws the entire graph. At \(\theta = 0 \), \(r = 4 \cos(0) = 4 \). We would then consider the next \(\theta \) value when \(r \) will be 4, which would mean we are back where we started. Solving,

\[
4 = 4 \cos(\theta) \\
\cos(\theta) = 1 \\
\theta = 0 \text{ or } \theta = \pi
\]

This shows us at 0 radians we are at the point (0, 4) and again at \(\pi \) radians we are at the point (0, 4) having finished one complete revolution.

The entire graph of this circle is produced for \(0 \leq \theta < \pi \).

Try it Now

3. Sketch a graph of the polar equation \(r = 3 \sin(\theta) \), and indicate how long it takes to complete one cycle.

The last few examples have all been circles. Next we will consider two other “named” polar equations, \textit{limaçons} and \textit{roses}.

Example 8

Sketch a graph of the polar equation \(r = 4 \sin(\theta) + 2 \). What interval of \(\theta \) values describes the inner loop?

This type of graph is called a \textit{limaçon}.
Using technology, we can sketch a graph. The inner loop begins and ends at the origin, where \(r = 0 \). We can solve for the \(\theta \) values for which \(r = 0 \).

\[
0 = 4 \sin(\theta) + 2
\]

\[
-2 = 4 \sin(\theta)
\]

\[
\sin(\theta) = -\frac{1}{2}
\]

\[
\theta = \frac{7\pi}{6} \quad \text{or} \quad \theta = \frac{11\pi}{6}
\]

This tells us that \(r = 0 \) or the graph passes through the point (0, 0) twice.

The inner loop is drawn on the interval \(\frac{7\pi}{6} \leq \theta \leq \frac{11\pi}{6} \). This corresponds to where the function \(r = 4 \sin(\theta) + 2 \) is negative.

Example 9

Sketch a graph of the polar equation \(r = \cos(3\theta) \). What interval of \(\theta \) values describes one small loop of the graph?

This type of graph is called a 3 leaf rose.

Again we can use technology to produce a graph. As with the last problem, we can note that one loop of this graph begins and ends at the origin, where \(r = 0 \). Solving for \(\theta \),

\[
0 = \cos(3\theta)
\]

Substitute \(u = 3\theta \)

\[
0 = \cos(u)
\]

\[
u = \frac{\pi}{2} \quad \text{or} \quad u = \frac{3\pi}{2}
\]

Undo the substitution

\[
3\theta = \frac{\pi}{2} \quad \text{or} \quad 3\theta = \frac{3\pi}{2}
\]

\[
\theta = \frac{\pi}{6} \quad \text{or} \quad \theta = \frac{\pi}{2}
\]

There are 3 solutions on \(0 \leq \theta < 2\pi \) which correspond to the 3 times the graph returns to the origin, but the two solutions we solved for above are enough to conclude that one loop is drawn for \(\frac{\pi}{6} \leq \theta < \frac{\pi}{2} \).
If we wanted to get an idea of how this graph was drawn, consider when \(\theta = 0 \).

\[
r = \cos(3\theta) = \cos(0) = 1,
\]
so the graph starts at (1,0). We also know that at \(\theta = \frac{\pi}{6} \),

\[
r = \cos\left(3 \cdot \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{2}\right) = 0,
\]
and at \(\theta = \frac{\pi}{2} \), \(r = \cos\left(3 \cdot \frac{\pi}{2}\right) = \cos\left(\frac{3\pi}{2}\right) = 0 \).

Looking at the graph, notice that at any angle in this range, for example at \(\frac{\pi}{3} \), produces a negative \(r \):

\[
r = \cos\left(3 \cdot \frac{\pi}{3}\right) = \cos(\pi) = -1.
\]
Since \(r = \cos(3\theta) \) is negative on this interval, this interval corresponds to the loop of the graph in the third quadrant.

Try it Now

4. Sketch a graph of the polar equation \(r = \sin(2\theta) \). Would you call this function a limaçon or a rose?

Converting Equations

While many polar equations cannot be expressed nicely as Cartesian equations and vice versa, it can be beneficial to convert between the two forms, when possible. To do this we use the same relationships we used to convert points between coordinate systems.

Example 10

Rewrite the Cartesian equation \(x^2 + y^2 = 6y \) as a polar equation.

We wish to eliminate \(x \) and \(y \) from the equation and introduce \(r \) and \(\theta \). Ideally, we would like to write the equation with \(r \) isolated, if possible, which represents \(r \) as a function of \(\theta \).

\[
x^2 + y^2 = 6y
\]
Remembering \(x^2 + y^2 = r^2 \) we substitute

\[
r^2 = 6y
\]
y = \(r \sin(\theta) \) and so we substitute again

\[
r^2 = 6r \sin(\theta)
\]
Dividing by \(r \) we get the polar form

\[
r = 6 \sin(\theta)
\]
This equation is fairly similar to the one we graphed in Example 7. In fact, this equation describes a circle with bottom on the origin and top at the point \((0, 6)\).
Example 11

Rewrite the Cartesian equation \(y = 3x + 2 \) as a polar equation.

\[
\begin{align*}
y &= 3x + 2 \\
r \sin(\theta) &= 3r \cos(\theta) + 2 \\
r \sin(\theta) - 3r \cos(\theta) &= 2 \\
r \left(\frac{\sin(\theta) - 3 \cos(\theta)}{\sin(\theta) - 3 \cos(\theta)}\right) &= 2 \\
r &= \frac{2}{\sin(\theta) - 3 \cos(\theta)}
\end{align*}
\]

In this case, the polar equation is not as concise as the Cartesian equation, but there are still times when this equation might be useful.

Example 12

Rewrite the Polar equation \(r = \frac{3}{1 - 2 \cos(\theta)} \) as a Cartesian equation.

We want to eliminate \(\theta \) and \(r \) and introduce \(x \) and \(y \). It is usually easiest to start by clearing the fraction and looking to substitute values in that will eliminate \(\theta \).

\[
\begin{align*}
r &= \frac{3}{1 - 2 \cos(\theta)} \\
r(1 - 2 \cos(\theta)) &= 3 \\
r \left(1 - \frac{2x}{r}\right) &= 3 \\
r - 2x &= 3 \\
r &= 3 + 2x \\
\end{align*}
\]

When our entire equation has been changed from \(r \) and \(\theta \) to \(x \) and \(y \) we can stop unless asked to solve for \(y \) or simplify.

In this example, if desired, the right side of the equation could be expanded and the equation simplified further. However, the equation cannot be solved for \(y \), so cannot be written as a function in Cartesian form.

Try it Now

5. a. Rewrite the Cartesian equation as a polar equation \(y = \pm \sqrt{3 - x^2} \)

 b. Rewrite the Polar equation as a Cartesian equation \(r = 2 \sin(\theta) \)
Example 13

Rewrite the polar equation \(r = \sin(2\theta) \) as a Cartesian equation.

\[
\begin{align*}
 r &= \sin(2\theta) \\
 r &= 2\sin(\theta)\cos(\theta) & \text{Use the double angle identity for sine} \\
 r &= 2 \cdot \frac{x}{r} \cdot \frac{y}{r} & \text{Use } \cos(\theta) = \frac{x}{r} \text{ and } \sin(\theta) = \frac{y}{r} \\
 r &= \frac{2xy}{r^2} & \text{Simplify} \\
 r^3 &= 2xy & \text{Multiply by } r^2 \\
 \left(\sqrt{x^2 + y^2}\right)^3 &= 2xy
\end{align*}
\]

This equation could also be written as

\[
\left(x^2 + y^2\right)^{3/2} = 2xy \quad \text{or} \quad x^2 + y^2 = \left(2xy\right)^{2/3}
\]

Important Topics of This Section

- Cartesian Coordinate System
- Polar Coordinate System
- Polar coordinates \((r, \theta)\) and \((-r, \theta)\)
- Converting points between systems
- Polar equations: Spirals, Circles, Limacons and Roses
- Converting equations between systems

Try it Now Answers

1.

2. a. \((r, \theta) = (2, \pi)\) converts to \((x, y) = (-2, 0)\)

 b. \((x, y) = (0, -4)\) converts to \((r, \theta) = \left(4, \frac{3\pi}{2}\right) \text{ or } (4, -\frac{\pi}{2})\)
3. It completes one cycle between $0 \leq \theta < \pi$

4. This is a 4 leaf rose

5. a. $y = \pm \sqrt{3 - x^2}$ becomes $r = 3$

 b. $r = 2 \sin(\theta)$ becomes $x^2 + y^2 = 2y$
Section 8.3 Polar Form of Complex Numbers

From previous classes, you may have encountered “imaginary numbers” – the square root of negative numbers – and their more general form, complex numbers. While these are useful for expressing the solutions to quadratics, they have much richer applications to electrical engineering, signal analysis, and other fields. Most of these more advanced applications rely on the properties that arise from looking at complex numbers through the eyes of polar coordinates.

We will begin with a review of the definition of complex numbers.

Definition

The most basic element of a complex number is i, defined to be $i = \sqrt{-1}$, commonly called an imaginary number.

Example 1

Simplify $\sqrt{-9}$

We can separate $\sqrt{-9}$ as $\sqrt{9}\sqrt{-1}$. We can take the square root of 9, and write the square root of -1 as i.

$\sqrt{-9} = \sqrt{9}\sqrt{-1} = 3i$

A complex number is a combination of a real term with an imaginary term.

Definition

A complex number $z = a + bi$

a is the real part of the complex number

b is the imaginary part of the complex number

$i = \sqrt{-1}$

Plotting a complex number

With real numbers, we can plot a number on a single number line. For example, if we wanted to show the number 3, we plot a point:

![Number line with point at 3]
To show a complex number like $3 - 4i$, we need more than just one number line since there are two components to the number. To plot this number, we need a complex plane.

Definition

In the **complex plane**, the horizontal axis is the real axis and the vertical axis is the imaginary axis.

Example 2

Plot the number $3 - 4i$ on the complex plane.

The real part of this number is 3, and the imaginary part is -4. To plot this, we put a point 3 in the horizontal and -4 in the vertical.

Because this is analogous to the Cartesian Coordinate system for plotting points, we can look at our complex number $z = a + bi$ as $z = x + yi$ in order to study some of the similarities between these two systems.

Arithmetic on Complex Numbers

Before we dive into the more complicated uses of complex numbers, let’s make sure we remember the basic arithmetic. To add or subtract complex numbers, we simply add the like terms, combining the real parts and combining the imaginary parts.

Example 3

Add $3 - 4i$ and $2 + 5i$

Adding $(3 - 4i) + (2 + 5i)$, we add the real parts and the imaginary parts

$3 + 2 - 4i + 5i$

$5 + i$

Try it Now

1. Subtract $3 - 4i$ and $2 + 5i$

We can also multiply and divide complex numbers.
Example 4

Multiply: \(4(2 + 5i)\)

To multiply the complex number by a real number, we simply distribute as we would when multiplying polynomials.

\[
4(2 + 5i) = 4 \cdot 2 + 4 \cdot 5i = 8 + 20i
\]

Example 5

Divide \(\frac{(2 + 5i)}{(4 - i)}\)

To divide two complex numbers, we have to devise a way to write this as a complex number with a real part and an imaginary part.

We start this process by eliminating the complex number in the denominator. To do this, we multiply the numerator and denominator by a complex number so that the result in the denominator is a real number. The number we need to multiply by is called the complex conjugate, in which the sign of the imaginary part is changed. Here, \(4+i\) is the complex conjugate of \(4-i\). Of course, obeying our algebraic rules, we must multiply by \(4+i\) on the top and bottom.

\[
\frac{(2 + 5i)}{(4 - i)} \cdot \frac{(4 + i)}{(4 + i)}
\]

To multiply two complex numbers, we expand the product as we would with polynomials (the process commonly called FOIL – “first outer inner last”). In the numerator:

\[
(2 + 5i)(4 + i) = 8 + 20i + 2i + 5i^2 = 8 + 20i + 2i + 5(-1) = 8 + 20i + 2i - 5 = 3 + 22i
\]

Following the same process to multiply the denominator

\[
(4 - i)(4 + i) = 16 - 4i + 4i - i^2 = 16 - (-1) = 17
\]

Combining this we get \(\frac{3 + 22i}{17} = \frac{3}{17} + \frac{22i}{17}\)
Try it Now
2. Multiply $3 - 4i$ and $2 + 3i$

With the interpretation of complex numbers as points in a plane, which can be related to the Cartesian coordinate system, you might be starting to guess our next step – to refer to this point not by its horizontal and vertical components, but its polar location, given by the distance from the origin and angle.

Polar Form of Complex Numbers
Remember because the complex plane is analogous to the Cartesian plane that we can write our complex number, $z = a + bi$ as $z = x + yi$.

Bringing in all of our old rules we remember the following:

\[
\begin{align*}
\cos(\theta) &= \frac{x}{r} & x &= r \cos(\theta) \\
\sin(\theta) &= \frac{y}{r} & y &= r \sin(\theta) \\
\tan(\theta) &= \frac{y}{x} & x^2 + y^2 &= r^2
\end{align*}
\]

With this in mind, we can write $z = x + yi = r \cos(\theta) + ir \sin(\theta)$.

Example 6
Express the complex number $4i$ using polar coordinates.

On the complex plane, the number $4i$ is a distance of 4 from the origin at an angle of $\frac{\pi}{2}$, so

\[
4i = 4 \cos\left(\frac{\pi}{2}\right) + i4 \sin\left(\frac{\pi}{2}\right)
\]

Note that the real part of this complex number is 0.

In the 18th century, Leonhard Euler demonstrated a relationship between exponential and trigonometric functions that allows the use of complex numbers to greatly simplify some trigonometric calculations. While the proof is beyond the scope of this class, you will likely see it in a later calculus class.
Definition

The **polar form of a complex number**

The polar form of a complex number is \(z = re^{i\theta} \)

Euler’s Formula

\[re^{i\theta} = r \cos(\theta) + ir \sin(\theta) \]

Similar to plotting a point in the Polar Coordinate system we need \(r \) and \(\theta \) to find the polar form of a complex number.

Example 7

Find the polar form of the complex number \(-7\)

Knowing that this is a complex number we can consider the unsimplified version \(-7+0i\)

Plotted in the complex plane, the number \(-7\) is on the negative horizontal axis, a distance of \(7\) from the origin at an angle of \(\pi\).

The polar form of the number \(-7\) is \(7e^{i\pi}\)

Note that the radius is still \(7\), and the values of cosine and sine at an angle of \(\pi\) account for the value being at \(-7\) on the horizontal axis.

Example 8

Find the polar form of \(-4+4i\)

On the complex plane, this complex number would correspond to the point \((-4, 4)\) on a Cartesian plane. We can find the distance \(r\) and angle \(\theta\) as we did in the last section.

\[
\begin{align*}
 r^2 &= x^2 + y^2 \\
 r^2 &= (-4)^2 + 4^2 \\
 r &= \sqrt{32} = 4\sqrt{2}
\end{align*}
\]

To find \(\theta\), we can use \(\cos(\theta) = \frac{x}{r}\)

\[
\cos(\theta) = \frac{-4}{4\sqrt{2}} = -\frac{\sqrt{2}}{2}
\]

This is one of known cosine values, and since the point is in the second quadrant, we can conclude that \(\theta = \frac{3\pi}{4}\).

The final polar form of this complex number is \(4\sqrt{2}e^{\frac{3\pi}{4}}\)
Note we could have used \(\tan(\theta) = \frac{y}{x} \) instead to find the angle, so long as we remember to check the quadrant.

Try it Now

3. Write \(\sqrt{3} + i \) in polar form

Example 9

Write \(3e^{\frac{\pi}{6}} \) in complex \(a + bi \) form.

\[
3e^{\frac{\pi}{6}} = 3 \cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right) \quad \text{Evaluate the trig functions}
\]

\[
= 3 \cdot \frac{\sqrt{3}}{2} + i \cdot \frac{1}{2} \quad \text{Simplify}
\]

\[
= \frac{3\sqrt{3}}{2} + i \frac{3}{2}
\]

The polar form of a complex number provides a powerful way to compute powers and roots of complex numbers by using exponent rules you learned in algebra. To compute a power of a complex number, we:

1) Convert to polar form
2) Raise to the power, using exponent rules to simplify
3) Convert back to \(a + bi \) form, if needed

Example 10

Evaluate \((-4 + 4i)^6\)

While we could multiply this number by itself six times, that would be very tedious. Instead, we can utilize the polar form of the complex number. In an earlier example, we found that \(-4 + 4i = 4\sqrt{2}e^{\frac{3\pi}{4}}\). Using this,

\[
(-4 + 4i)^6 \quad \text{Write the complex number in polar form}
\]

\[
= \left(4\sqrt{2}e^{\frac{3\pi}{4}} \right)^6 \quad \text{Utilize the exponent rule } (ab)^m = a^m b^m
\]

\[
= (4\sqrt{2})^6 \left(e^{\frac{3\pi}{4}} \right)^6 \quad \text{On the second factor, use the rule } (a^m)^n = a^{mn}
\]
\[= \left(4\sqrt{2}\right)^6 e^{\frac{3\pi i}{6}} \quad \text{Simplify} \]
\[= 32768e^{\frac{9\pi i}{2}} \]

At this point, we have found the power as a complex number in polar form. If we want the answer in standard \(a + bi\) form, we can utilize Euler’s formula.

\[32768e^{\frac{9\pi i}{2}} = 32768\cos\left(\frac{9\pi}{2}\right) + i32768\sin\left(\frac{9\pi}{2}\right) \]

Since \(\frac{9\pi}{2}\) is coterminal with \(\frac{\pi}{2}\), we can use our special angle knowledge to evaluate the sine and cosine.

\[32768\cos\left(\frac{9\pi}{2}\right) + i32768\sin\left(\frac{9\pi}{2}\right) = 32768(0) + i32768(1) = 32768i \]

We have found that \((-4 + 4i)^6 = 32768i\)

Notice that this is equivalent to \(z^6 = (-4 + 4i)^6\), written in polar form

\[= \left(4\sqrt{2}\right)^6 \left(e^{\frac{3\pi i}{4}}\right)^6 = \left(4\sqrt{2}\right)^6 \left(\cos\left(\frac{3\pi}{4} * 6\right) + i\sin\left(\frac{3\pi}{4} * 6\right)\right) \]

The result of the process we followed above is summarized in DeMoivre’s Theorem.

Definition

DeMoivre’s Theorem

If \(z = r(\cos(\theta) + i\sin(\theta))\), then for any integer \(n\), \(z^n = r^n(\cos(n\theta) + i\sin(n\theta))\)

Example 11

Evaluate \(\sqrt{9i}\)

To evaluate the square root of a complex number, we can first note that the square root is the same as having an exponent of \(\frac{1}{2}\). \(\sqrt{9i} = (9i)^{1/2}\)

To evaluate the power, we first write the complex number in polar form. Since \(9i\) has no real part, we know that this value would be plotted along the vertical axis, a distance of 9 from the origin at an angle of \(\frac{\pi}{2}\). This gives the polar form: \(9i = 9e^{\frac{\pi i}{2}}\)
\[\sqrt{9i} = (9i)^{1/2} \]

Use the polar form

\[= \left(9e^{\pi i/2} \right)^{1/2} \]

Use exponent rules to simplify

\[= 9^{1/2} \left(e^{\pi i/2} \right)^{1/2} \]

Simplify

\[= 9^{1/2} e^{\pi i/4} \]

Rewrite using Euler’s formula if desired

\[= 3e^{\pi i/4} \]

Evaluate the sine and cosine

\[= 3 \cos \left(\frac{\pi}{4} \right) + i 3 \sin \left(\frac{\pi}{4} \right) \]

Using the polar form, we were able to find the square root of a complex number.

\[\sqrt{9i} = \frac{3\sqrt{2}}{2} + \frac{3\sqrt{2}}{2} i \]

Alternatively, using DeMoivre’s Theorem we can write

\[\left(9e^{\pi i/2} \right)^{1/2} = 3 \left(\cos \left(\frac{\pi}{4} \right) + i \sin \left(\frac{\pi}{4} \right) \right) \]

and simplify

Try it Now

4. Write \((\sqrt{3} + i)^6\) in polar form

You may remember that equations like \(x^2 = 4\) have two solutions, 2 and -2 in this case, though the square root only gives one of those solutions. Similarly, the equation \(z^3 = 8\) would have three solutions where only one is given by the cube root. In this case, however, only one of those solutions, \(z = 2\), is a real value. To find the others, we can use the fact that complex numbers have multiple representations in polar form.

Example 12

Find all complex solutions to \(z^3 = 8\).

Since we are trying to solve \(z^3 = 8\), we can solve for \(x\) as \(z = 8^{1/3}\). Certainly one of these solutions is the basic cube root, giving \(z = 2\). To find others, we can turn to the polar representation of 8.
Since 8 is a real number, it would sit in the complex plane on the horizontal axis at an angle of 0, giving the polar form \(8e^{0i} \). Taking the 1/3 power of this gives the real solution:

\[
\left(8e^{0i}\right)^{\frac{1}{3}} = 8^{\frac{1}{3}} \left(e^{0i}\right)^{\frac{1}{3}} = 2e^{0i} = 2 \cos(0) + i2 \sin(0) = 2
\]

However, since the angle \(2\pi\) is coterminal with the angle of 0, we could also represent the number 8 as \(8e^{2\pi i}\). Taking the 1/3 power of this gives a first complex solution:

\[
\left(8e^{2\pi i}\right)^{\frac{1}{3}} = 8^{\frac{1}{3}} \left(e^{2\pi i}\right)^{\frac{1}{3}} = 2e^{\frac{2\pi i}{3}} = 2 \cos\left(\frac{2\pi}{3}\right) + i2 \sin\left(\frac{2\pi}{3}\right) = 2\left(-\frac{1}{2}\right) + i2\left(\frac{\sqrt{3}}{2}\right) = -1 + \sqrt{3}i
\]

To find the third root, we use the angle of \(4\pi\), which is also coterminal with an angle of 0.

\[
\left(8e^{4\pi i}\right)^{\frac{1}{3}} = 8^{\frac{1}{3}} \left(e^{4\pi i}\right)^{\frac{1}{3}} = 2e^{\frac{4\pi i}{3}} = 2 \cos\left(\frac{4\pi}{3}\right) + i2 \sin\left(\frac{4\pi}{3}\right) = 2\left(-\frac{1}{2}\right) + i2\left(-\frac{\sqrt{3}}{2}\right) = -1 - \sqrt{3}i
\]

Altogether, we found all three complex solutions to \(z^3 = 8\), \(z = 2, -1 + \sqrt{3}i, -1 - \sqrt{3}i\)

Important Topics of This Section

- Complex numbers
- Imaginary numbers
- Plotting points in the complex coordinate system
- Basic operations with complex numbers
- Euler’s Formula
- DeMoivre’s Theorem
- Finding complex solutions to equations

Try it Now Answers

1. \((3 - 4i) - (2 + 5i) = 1 - 9i\)
2. \((3 - 4i)(2 + 3i) = 18 + i\)
3. \(\sqrt{3} + i\) in polar form is \(2e^{i\pi/6}\)
4. \(-64\)
Section 8.4 Vectors

A woman leaves home, walks 3 miles north, then 2 miles southeast. How far is she from home, and what direction would she need to walk to return home? How far has she walked total by the time she gets home?

This question may seem familiar – indeed we did a similar problem with a boat in the first section of the chapter. In that section, we solved the problem using triangles. In this section, we will investigate another way to approach the problem using vectors, a geometric entity that indicates both a distance and a direction. We will begin our investigation using a purely geometric view of vectors.

A Geometric View of Vectors

Definition

A vector is an indicator of both length and direction.

Geometrically, a vector can be represented by an arrow or a ray, which has both length and indicates a direction. Starting at the point \(A \), a vector, which means “carrier” in Latin, moves toward point \(B \), we write \(\overrightarrow{AB} \).

A vector is typically indicated using boldface type, like \(u \), or by capping the letter representing the vector with an arrow, like \(\vec{u} \).

Example 1

Find a vector that represents the movement from the point \(P:(-1, 2) \) to the point \(Q:(3,3) \)

By drawing an arrow from the first point to the second, we can construct a vector \(\overrightarrow{PQ} \).

Using this geometric representation of vectors, we can visualize the addition and scaling of vectors.

To add vectors, we envision a sum of two movements. To find \(\vec{u} + \vec{v} \), we first draw the vector \(\vec{u} \), then from the end of \(\vec{u} \) we drawn the vector \(\vec{v} \). This corresponds to the notation that first we move along the first vector, and then from that end position we move along the second vector. The sum \(\vec{u} + \vec{v} \) is the new vector that travels directly from the beginning of \(\vec{u} \) to the end of \(\vec{v} \) in a straight path.
Definition

To **add vectors geometrically**, draw \vec{v} starting from the end of \vec{u}. The sum $\vec{u} + \vec{v}$ is the vector from the beginning of \vec{u} to the end of \vec{v}.

Example 2

Given the two vectors shown below, draw $\vec{u} + \vec{v}$

We draw \vec{v} starting from the end of \vec{u}, then draw in the sum $\vec{u} + \vec{v}$ from the beginning of \vec{u} to the end of \vec{v}.

Notice that the woman walking problem from the beginning of the section could be visualized as the sum of two vectors. The resulting sum vector would indicate her end position relative to home.

Try it Now

1. Draw a vector, \vec{v} that travels from the origin to the point (3, 5)

 Note that although vectors can exist anywhere in the plane, if we put the starting point at the origin it is easy to understand its size and direction relative to other vectors.

To scale vectors by a constant, such as $3\vec{u}$, we can imagine adding $\vec{u} + \vec{u} + \vec{u}$. The result will be a vector three times as long in the same direction as the original vector. If we were to scale a vector by a negative number, such as $-\vec{u}$, we can envision this as the opposite of \vec{u}; the vector so that $\vec{u} + (-\vec{u})$ returns us to the starting point. This vector would point in the opposite direction as \vec{u}.

Another way to think about scaling a vector is to maintain its direction and multiply its length by a constant, so that $3\vec{u}$ would point in the same direction but will be 3 times as long.
Definition

To **geometrically scale a vector** by a constant, scale the length of the vector by the constant.

Scaling a vector by a negative constant will reverse the direction of the vector.

Example 3

Given the vector shown, draw $3\vec{u}$, $-\vec{u}$, and $-2\vec{u}$

The vector $3\vec{u}$ will be three times as long. The vector $-\vec{u}$ will have the same length but point in the opposite direction. The vector $-2\vec{u}$ will point in the opposite direction and be twice as long.

By combining scaling and addition, we can find the difference between vectors geometrically as well, since $\vec{u} - \vec{v} = \vec{u} + (-\vec{v})$

Example 4

Given the vectors shown, draw $\vec{u} - \vec{v}$

From the end of \vec{u} we draw $-\vec{v}$, then draw in the result.

Notice that the sum and difference of two vectors are the two diagonals of a parallelogram with the vectors \vec{u} and \vec{v} as edges.

Try it Now

2. Using vector, \vec{v} from try it now #1, draw $-2\vec{v}$
Component Form of Vectors
While the geometric interpretation of vectors gives us an intuitive understanding of vectors, it does not provide us a convenient way to do calculations. For that, we need a handy way to represent vectors. Since a vector involves a length and direction, it would be logical to want to represent a vector using a length and an angle θ, usually measured from standard position.

![Diagram of vector \vec{u} with components x and y.]

Definition
A vector \vec{u} can be described by its magnitude, or length, $|\vec{u}|$, and an angle θ.

While this is very reasonable, and a common way to describe vectors, it is often more convenient for calculations to represent a vector by horizontal and vertical components.

Definition
The component form of a vector represents the vector using two components. $\vec{u} = \langle x, y \rangle$ indicate the vector moves x horizontally and y vertically.

![Diagram of vector \vec{u} with components x and y.]

Notice how we can see the magnitude of the vector as the hypotenuse of a right triangle, or in polar form as the radius.

While it can be convenient to think of the vector $\vec{u} = \langle x, y \rangle$ as a vector from the origin to the point (x, y), be sure to remember that most vectors can be located anywhere in the plane, and simply indicate a movement in the plane.

It is common to need to convert from a magnitude and angle to the component form of the vector and vice versa. Happily, this process is identical to converting from polar coordinates to Cartesian coordinates or from the polar form of complex numbers to the $a+bi$, or $x+yi$ form.
Example 5
Find the component form of a vector with length 7 at an angle of 135 degrees.

Using the conversion formulas \(x = r \cos(\theta) \) and \(y = r \sin(\theta) \), we can find the components
\[
x = 7 \cos(135^\circ) = -\frac{7\sqrt{2}}{2}
\]
\[
y = 7 \sin(135^\circ) = \frac{7\sqrt{2}}{2}
\]

This vector can be written in component form as \(-\frac{7\sqrt{2}}{2}, \frac{7\sqrt{2}}{2}\).

Example 6
Find the magnitude and angle \(\theta \) representative of the vector \(\vec{u} = \langle 3, -2 \rangle \)

First we can find the magnitude by remembering the relationship between \(x, y \) and \(r \):
\[
r^2 = 3^2 + (-2)^2 = 13
\]
\[
r = \sqrt{13}
\]

Second we can find the angle. Using the tangent,
\[
\tan(\theta) = \frac{-2}{3}
\]
\[
\theta = \tan^{-1}\left(-\frac{2}{3}\right) \approx -33.69^\circ, \text{ or written as a coterminal positive angle, } 326.31^\circ \text{ because we know our point lies in the 4th quadrant.}
\]

Try it Now
3. Using vector, \(\vec{v} \) from Try it Now 1, the vector that travels from the origin to the point \((3, 5) \), find the components, magnitude and angle \(\theta \) that represent this vector.

In addition to representing distance movements, vectors are commonly used in physics and engineering to represent any quantity that has both direction and magnitude, including velocities and forces.
Example 7

An object is launched with initial velocity 200 meters per second at an angle of 30 degrees. Find the initial horizontal and vertical velocities.

By viewing the initial velocity as a vector, we can resolve the vector into horizontal and vertical components.

\[x = 200 \cos(30\degree) = 200 \cdot \frac{\sqrt{3}}{2} \approx 173.205 \text{ m/sec} \]
\[y = 200 \sin(30\degree) = 200 \cdot \frac{1}{2} = 100 \text{ m/sec} \]

This tells us that, absent wind resistance, the object will travel horizontally at about 173 meters each second. The vertical velocity will change due to gravity, but could be used with physics formulas or calculus to determine when the object would hit the ground.

Adding and Scaling Vectors in Component Form

To add vectors in component form, we can simply add the like components. To scale a vector by a constant, we scale each component by that constant.

Definition

To add, subtract, or scale vectors in component form

If \(\vec{u} = \langle u_1, u_2 \rangle \), \(\vec{v} = \langle v_1, v_2 \rangle \), and \(c \) is any constant, then
\[
\vec{u} + \vec{v} = \langle u_1 + v_1, u_2 + v_2 \rangle
\]
\[
\vec{u} - \vec{v} = \langle u_1 - v_1, u_2 - v_2 \rangle
\]
\[
c\vec{u} = \langle cu_1, cu_2 \rangle
\]

Example 8

Given \(\vec{u} = \langle 3, -2 \rangle \) and \(\vec{v} = \langle -1, 4 \rangle \), find a new vector \(\vec{w} = 3\vec{u} - 2\vec{v} \)

Using the vectors given,
\[
3\vec{u} - 2\vec{v} = 3\langle 3, -2 \rangle - 2\langle -1, 4 \rangle
\]
\[
= \langle 9, -6 \rangle - \langle -2, 8 \rangle
\]
\[
= \langle 11, -14 \rangle
\]

Vector \(\vec{w} \) has components \(3\vec{u} - 2\vec{v} \).
By representing vectors in component form, we can find the final displacement vector after a multitude of movements without needing to draw a lot of complicated non-right triangles. For a simple example, we revisit the problem from the opening of the section. The general procedure we will follow is:

1) Convert vectors to component form
2) Add the components of the vectors
3) Convert back to length and direction if needed to suit the context of the question

Example 9

A woman leaves home, walks 3 miles north, then 2 miles southeast. How far is she from home, and what direction would she need to walk to return home? How far has she walked by the time she gets home?

Let’s begin by understanding the question in a little more depth. When we use vectors to describe a traveling direction, we often position things so North points in the upwards direction, East points to the right, and so on, as pictured here:

Consequently, travelling NW, SW, NE or SE, means we are travelling through the quadrant bordered by the given directions at a 45 degree angle.

With this in mind we begin by converting each vector to components.
A walk 3 miles north would, in components, be \(\langle 0, 3 \rangle \).
A walk of 2 miles southeast would be at an angle of 45° South of East, or measuring from standard position the angle would be 315°.

Converting to components, we choose to use the standard position angle so that we do not have to worry about whether the signs are negative or positive; they will work out automatically.

\[
\langle 2 \cos(315^\circ), 2 \sin(315^\circ) \rangle = \left\langle 2 \cdot \frac{\sqrt{2}}{2}, 2 \cdot -\frac{\sqrt{2}}{2} \right\rangle = \langle 1.414, -1.414 \rangle
\]

Adding these vectors gives the sum of the movements in component form

\[
\langle 0, 3 \rangle + \langle 1.414, -1.414 \rangle = \langle 1.414, 1.586 \rangle
\]

To find how far she is from home and the direction she would need to walk to return home, we could find the magnitude and angle of this vector.

\[
\text{Length} = \sqrt{1.414^2 + 1.586^2} = 2.125
\]
To find the angle, we can use the tangent
\[\tan(\theta) = \frac{1.586}{1.414} \]
\[\theta = \tan^{-1}\left(\frac{1.586}{1.414}\right) = 48.273^\circ \text{ North of East} \]

Of course, this is the angle from her starting point to her ending point. To return home, she would need to head the opposite direction, which we could either describe as \(180^\circ + 48.273^\circ = 228.273^\circ\) measured in standard position, or as \(48.273^\circ\) South of West (or \(41.727^\circ\) West of South).

She has walked a total distance of \(3 + 2 + 2.125 = 7.125\) miles.

Keep in mind that total distance travelled is not the same as the final displacement vector or the “return” vector.

Try it Now

4. In a scavenger hunt directions are given to find a buried treasure. From a starting point at a flag pole you must walk 30 feet east, turn 30 degrees to the north and travel 50 feet, and then turn due south and travel 75 feet. Sketch a picture of these vectors, find their components and calculate how far and in what direction must you travel to go directly to the treasure from the flag pole without following the map?

While using vectors is not much faster than using law of cosines with only two movements, when combining three or more movements, forces, or other vector quantities, using vectors quickly becomes much more efficient than trying to use triangles.

Example 10

Three forces are acting on an object as shown below. What force must be exerted to keep the object in equilibrium, where the sum of the forces is zero.

We start by resolving each vector into components.
The first vector with magnitude 6 Newtons at an angle of 30 degrees will have components
\[
\langle 6 \cos(30^\circ), 6 \sin(30^\circ) \rangle = \left\langle 6 \cdot \frac{\sqrt{3}}{2}, 6 \cdot \frac{1}{2} \right\rangle = \langle 3\sqrt{3}, 3 \rangle
\]

The second vector is only in the horizontal direction, so can be written as \(\langle -7, 0 \rangle \)

The third vector with magnitude 4 Newtons at an angle of 300 degrees will have components
\[
\langle 4 \cos(300^\circ), 4 \sin(300^\circ) \rangle = \left\langle 4 \cdot \frac{1}{2}, 4 \cdot \frac{-\sqrt{3}}{2} \right\rangle = \langle 2, -2\sqrt{3} \rangle
\]

To keep the object in equilibrium, we need to find a force vector \(\langle x, y \rangle \) so the sum of the four vectors is the zero vector, \(\langle 0, 0 \rangle \).

\[
\langle 3\sqrt{3}, 3 \rangle + \langle -7, 0 \rangle + \langle 2, -2\sqrt{3} \rangle + \langle x, y \rangle = \langle 0, 0 \rangle
\]

Add component-wise

\[
\langle 3\sqrt{3} - 7 + 2, 3 + 0 - 2\sqrt{3} + y \rangle = \langle 0, 0 \rangle
\]

Simplify

\[
\langle 3\sqrt{3} - 5, 3 - 2\sqrt{3} + y \rangle = \langle 0, 0 \rangle
\]

Solve

\[
\langle x, y \rangle = \langle 0, 0 \rangle - \langle 3\sqrt{3} - 5, 3 - 2\sqrt{3} \rangle
\]

\[
\langle x, y \rangle = \langle -3\sqrt{3} + 5, -3 + 2\sqrt{3} \rangle = \langle -0.196, 0.464 \rangle
\]

This vector gives in components the force that would need to be applied to keep the object in equilibrium. If desired, we could find the magnitude of this force and direction it would need to be applied in.

Magnitude:
\[
\sqrt{(-0.196)^2 + 0.464^2} = 0.504
\]

Angle:
\[
\tan(\theta) = \frac{0.464}{-0.196}
\]
\[
\theta = \tan^{-1}\left(\frac{0.464}{-0.196}\right) = -67.089^\circ.
\]

This is in the wrong quadrant, so we adjust by finding the next angle with the same tangent value by adding a full period of tangent:
\[
\theta = -67.089^\circ + 180^\circ = 112.911^\circ
\]

To keep the object in equilibrium, a force of 0.504 Newtons would need to be applied at an angle of 112.911°.
Important Topics of This Section
Vectors, magnitude (length) & direction
Addition of vectors
Scaling of vectors
Components of vectors
Vectors as velocity
Vectors as forces
Adding & Scaling vectors in component form
Total distance travelled vs. total displacement

Try it Now Answers

1 & 2.

3. \(\vec{v} = \langle 3, 5 \rangle \)
 magnitude = \(\sqrt{34}, \theta \)
 \(\tan^{-1}\left(\frac{5}{3}\right) = 59.04^\circ \)

4.

\(\vec{v}_1 = \langle 30, 0 \rangle \)
(30 ft)
\(\vec{v}_2 = \langle 50 \cos(30^\circ), 50 \sin(30^\circ) \rangle \)
(50 ft)
\(\vec{v}_3 = \langle 0, -75 \rangle \)
(75 ft)
\(\vec{v}_f = \langle 30 + 50 \cos(30^\circ), 50 \sin(30^\circ) - 75 \rangle = \langle 73.301, -50 \rangle \)

magnitude = 58.83 feet at an angle of 34.3° south of east.
Section 8.5 Parametric Equations

Many shapes, even ones as simple as circles, cannot be represented in a form where \(y \) is a function of \(x \). Consider, for example, the path a moon follows as it orbits around a planet which simultaneously rotates around a sun. In some cases, polar equations provide a way to represent these shapes using functions. In others, we need a more versatile approach that allows us to represent both the \(x \) and \(y \) coordinates in terms of a third variable or parameter.

Definition

A **parametric equation** is a pair of functions \(x(t) \) and \(y(t) \) in which the \(x \) and \(y \) coordinates are the output, represented in terms of a third input parameter, \(t \).

Example 1

Moving at a constant speed, an object moves from coordinates (-5,3) to the coordinates (3,-1) in 4 seconds, where the coordinates are measured in meters. Find parametric equations for the position of the object.

The \(x \) coordinate of the object starts at -5 meters, and goes to +3 meters, this means the \(x \) direction has changed by 8 meters in 4 seconds, giving us a rate of 2 meters per second. We can now write the \(x \) coordinate as a linear function with respect to time, \(t \), \(x(t) = -5 + 2t \). Similarly, the \(y \) value starts at 3 and goes to -1, giving a change in \(y \) value of 4 meters, meaning the \(y \) values have decreased by 4 meters in 4 seconds, for a rate of -1 meter per second, giving equation \(y(t) = 3 - t \). Together, these are the parametric equation for the position of the object:

\[
x(t) = -5 + 2t \\
y(t) = 3 - t
\]

Using these equations, we can build a table of \(t \), \(x \), and \(y \) values. Because of the context, we limited ourselves to non-negative \(t \) values for this example, but in general you can use any values.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-5</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>-3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>-1</td>
</tr>
</tbody>
</table>

From this table, we could create three possible graphs: a graph of \(x \) vs. \(t \), which would show the horizontal position over time, a graph of \(y \) vs. \(t \), which would show the vertical position over time, or a graph of \(y \) vs. \(x \), showing the position of the object. This last graph is the one most commonly used.
Notice that the parameter t does not explicitly show up in this 3rd graph. Sometimes, when the parameter t does represent a quantity like time we might indicate the direction of movement on the graph using an arrow.
Example 2
Sketch a graph of
\[x(t) = t^2 + 1 \]
\[y(t) = 2 + t \]

We can begin by creating a table of values. From this table, we can plot the points and sketch in a rough graph of the curve and indicate the direction it travels with respect to time by using arrows.

\[
\begin{array}{c|c|c}
 t & x & y \\
 \hline
 -3 & 10 & -1 \\
 -2 & 5 & 0 \\
 -1 & 2 & 1 \\
 0 & 1 & 2 \\
 1 & 2 & 3 \\
 2 & 5 & 4 \\
\end{array}
\]

Notice that here the parametric equations provide a pair of functions that can describe a shape for which \(y \) is not a function of \(x \). This is an example of why using parametric equations can be useful – since they can represent an equation as a set of functions.

While plotting points is always an option for graphing, and is necessary in some cases like the last one, we can also use technology to sketch parametric equations – one of their primary benefits over complex non-functional equations in \(x \) and \(y \).

Example 3
Sketch a graph of
\[x(t) = 2\cos(t) \]
\[y(t) = 3\sin(t) \]

Using technology we can generate a graph of this equation, producing an ellipse shape.

Similar to graphing polar equations, you must change the MODE on your calculator or select parametric equations on your graphing technology before graphing a parametric equation. You will know you have successfully entered parametric mode when the equation input has changed to ask for a \(x(t) = \) and \(y(t) = \) pair of equations.
Try it Now

1. Sketch a graph of \(x(t) = 4 \cos(3t) \quad y(t) = 3 \sin(2t) \). This is an example of a \textbf{Lissajous} figure.

Example 4

The populations of rabbits and wolves on an island are given by the graphs below. Use the graphs as pieces of a parametric equation and sketch the populations in a \(r-w \) plane.

For each input \(t \), we can determine the number of rabbits, \(r \), and the number of wolves, \(w \), from the respective graphs, and then plot the corresponding point in the \(r-w \) plane.

This graph helps reveal the cyclical interaction between the two populations.

Converting from Parametric to Cartesian

In some cases, it is possible to eliminate the parameter \(t \), allowing you to write a pair of parametric equations as a Cartesian equation.

It is easiest to do this if one piece of parametric equations can easily be solved for \(t \), allowing you to then substitute the remaining expression into the second part.
Example 6

Write \(x(t) = t^2 + 1 \) as a Cartesian equation if possible.

\[
\begin{align*}
y(t) &= 2 + t \\
x(t) &= t^2 + 1
\end{align*}
\]

Here, the equation for \(y \) is linear, so is relatively easy to solve for \(t \). Since the resulting Cartesian equation will likely not be a function, and for convenience, we drop the function notation.

\[
\begin{align*}
y &= 2 + t & \text{Solve for } t \\
y - 2 &= t & \text{Substitute this for } t \text{ in the } x \text{ equation} \\
x &= (y - 2)^2 + 1
\end{align*}
\]

Although this is written as \(x(y) \) instead of the more common form \(y(x) \), this equation provides a Cartesian equation equivalent to the parametric equation.

Try it Now

2. Write \(x(t) = t^3 \) as a Cartesian equation if possible.

\[
\begin{align*}
y(t) &= t^6
\end{align*}
\]

Example 7

Write \(x(t) = \sqrt{t} + 2 \) as a Cartesian equation if possible.

\[
\begin{align*}
y(t) &= \log(t)
\end{align*}
\]

We could solve either the first or second equation for \(t \). Solving the first,

\[
\begin{align*}
x &= \sqrt{t} + 2 \\
x - 2 &= \sqrt{t} & \text{Square both sides} \\
(x - 2)^2 &= t & \text{Substitute into the } y \text{ equation} \\
y &= \log((x - 2)^2)
\end{align*}
\]

Since the parametric equation is only defined for \(t \geq 0 \), this Cartesian equation is equivalent to the parametric equation on the corresponding domain. To find the corresponding domain we solve for \(x \) when \(t = 0 \) to find \(x \geq 2 \).

In the case above, the parametric equation and Cartesian equations did not have the same domain and range. To ensure that the Cartesian equation is as equivalent as possible to the original parametric equation, we try to avoid using domain-restricted inverse functions, such as the inverse trig functions, when possible. For equations involving trig functions, we often try to find an identity to utilize to avoid the inverse functions.
Example 8

Write \(x(t) = 2 \cos(t) \)
\(y(t) = 3 \sin(t) \)
as a Cartesian equation if possible.

To rewrite this, we can utilize the Pythagorean identity \(\cos^2(t) + \sin^2(t) = 1 \).

\(x = 2 \cos(t) \) so \(\frac{x}{2} = \cos(t) \)
\(y = 3 \sin(t) \) so \(\frac{y}{3} = \sin(t) \)

Starting with the Pythagorean Identity

\[
\cos^2(t) + \sin^2(t) = 1
\]
Substitute in the expressions from our parametric equation

\[
\left(\frac{x}{2} \right)^2 + \left(\frac{y}{3} \right)^2 = 1
\]
Simplify

\[
\frac{x^2}{4} + \frac{y^2}{9} = 1
\]

This is the Cartesian equation for the ellipse we graphed earlier.

Parameterizing Curves

While converting a parametric equation to Cartesian can be useful, it is often more useful to parameterize a Cartesian equation – converting it into a parametric equation.

If the Cartesian equation is already a function, then parameterization is trivial – the independent variable in the function can simply be defined as \(t \).

Example 9

Parameterize the equation \(x = y^3 - 2y \)

In this equation, \(x \) is expressed as a function of \(y \). By defining \(y = t \) we can then substitute that into the Cartesian equation providing \(x = t^3 - 2t \). Together, this produces the parametric equation:

\[
x(t) = t^3 - 2t
\]
\[
y(t) = t
\]

Try it Now

3. Write \(x^2 + y^2 = 3 \) as a parametric equation if possible.
In addition to parameterizing Cartesian equations, we also can parameterize behaviors and movements.

Example 10

A robot follows the path shown. Create a table of values for the \(x(t) \) and \(y(t) \) functions.

Since we know the direction of motion, we can introduce consecutive values for \(t \) along the path of the robot. Using these values with the \(x \) and \(y \) coordinates of the robot, we can create the tables. For example, we designate the starting point, at (1, 1), as the position at \(t = 0 \), the next point at (3, 1) as the position at \(t = 1 \), and so on.

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(t)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Notice how this also ties back to vectors. The journey of the robot as it moves through the Cartesian plane could also be displayed as vectors and total distance and displacement could be calculated.

Example 11

A light is placed on the edge of a bicycle tire as shown and the bicycle starts rolling down the street. Find a parametric equation for the position of the light after the wheel has rotated through an angle of \(\theta \).

Relative to the center of the wheel, the position of the light can be found as the coordinates of a point on a circle, but since the \(x \) coordinate begins at 0 and moves in the negative direction, while the \(y \) coordinate starts at the lowest value, the coordinates of the point will be given by:
\[x = -r \sin(\theta) \]
\[y = -r \cos(\theta) \]

The center of the wheel, however, is moving horizontally. It remains at a constant height of \(r \), but the horizontal position will move a distance equivalent to the arclength of the circle drawn out by the angle, \(s = r \theta \). The position of the center of the circle is then
\[x = r \theta \]
\[y = r \]

Combining the position of the center of the wheel with relative position of the light on the wheel we get the parametric equation, with \(\theta \) as the parameter.
\[x = r \theta - r \sin(\theta) = r(\theta - \sin(\theta)) \]
\[y = r - r \cos(\theta) = r(1 - \cos(\theta)) \]

The result graph is called a cycloid.

Example 12
A moon travels around a planet as shown, orbiting once every 10 days. The planet travels around a sun as shown, orbiting once every 100 days. Find a parametric equation for the position of the moon after \(t \) days.

The coordinates of a point on a circle can always be written in the form
\[x = r \cos(\theta) \]
\[y = r \sin(\theta) \]
Since the orbit of the moon around the planet has a period of 10 days, the equation for the position of the moon relative to the planet will be

\[x(t) = 6 \cos \left(\frac{2 \pi}{10} t \right) \]
\[y(t) = 6 \sin \left(\frac{2 \pi}{10} t \right) \]

With a period of 100 days, the equation for the position of the planet relative to the sun will be

\[x(t) = 30 \cos \left(\frac{2 \pi}{100} t \right) \]
\[y(t) = 30 \sin \left(\frac{2 \pi}{100} t \right) \]

Combining these together, we can find the position of the moon relative to the sun as the sum of the components.

\[x(t) = 6 \cos \left(\frac{2 \pi}{10} t \right) + 30 \cos \left(\frac{2 \pi}{100} t \right) \]
\[y(t) = 6 \sin \left(\frac{2 \pi}{10} t \right) + 30 \sin \left(\frac{2 \pi}{100} t \right) \]

The resulting graph is shown here.

Try it Now

4. A wheel of radius 4 is rolled around the outside of a circle of radius 7. Find a parametric equation for the position of a point on the boundary of the smaller wheel. This shape is called an epicycloid.

Important Topics of This Section

- Parametric equations
- Graphing \(x(t) \), \(y(t) \) and the corresponding \(x-y \) graph
- Sketching graphs and building a table of values
- Converting parametric to Cartesian
- Converting Cartesian to parametric (parameterizing curves)
Try it Now Answers

1. \(y = x^2 \)

2. \(x(t) = 3 \cos(t) \)
 \(y(t) = 3 \sin(t) \)

3. \(x(t) = 11 \cos(t) - 4 \cos \left(\frac{11t}{4} \right) \)

4. \(y(t) = 11 \sin(t) - 4 \sin \left(\frac{11t}{4} \right) \)