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Chapter 6: Periodic Functions

In the previous chapter, the trigonometric funcsiovere introduced as ratios of sides of a
triangle, and related to points on a circle. Waaeal how thex andy values of the

points did not change with repeated revolutionsiadathe circle by finding coterminal
angles. In this chapter, we will take a closer labkhe important characteristics and
applications of these types of functions, and begiming equations involving them.
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Section 6.1 Sinusoidal Graphs

The London Eyeis a huge Ferris wheel with diameter
135 meters (443 feet) in London, England, which
completes one rotation every 30 minutes. When we
look at the behavior of this Ferris wheel it isazl¢éhat it
completes 1 cycle or 1 revolution and then repiass
revolution over and over again.

This is an example of a periodic function, becahse
Ferris wheel repeats its revolution or one cyclerg\B0
minutes, and so we say it has a period of 30 msnute

In this section, we will work to sketch a grapheof
rider’s height over time and express the heigtd as
function of time.

Definition
A periodic function occurs when a specific horizontal shift,results in the original
function; wheref (x+ P) = f(x) for all values ok. When this occurs we call the

horizontal shift theeriod of the function.

You might immediately guess that there is a conaedtere to finding points on a circle,
since the height above ground would correspontey value of a point on the circle.
We can determine thevalue by using the sine function. To get a betégrse of this
function’s behavior, we can create a table of valre know, and use them to sketch a
graph of the sine and cosine functions.

! London Eye photo by authors, 2010, CC-BY
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Listing some of the values for sine and cosine anigcircle,

0 0 |n |n |2 [n |22 |31 [&¢ |7
6 |4 |3 |2 |3 | 4 |6

cos |1 |3 |¥2 [L |0 |1 | 42| 3|1
2 |2 |2 2 |72 |2

s [0 [1 [y2 (3 |L |3 |J2 |L |0
2 |2 |2 2 |2 |2

Here you can see how for each angle, we usg Wiakue of the point on the circle to
determine th@utput value of the sine function.

f(0) = sin()

Plotting more points gives the full shape of theesand cosine functions.

| f(0) = sin(6)

| | | | | | |// 0

I l I I I I
T a2 Iad T 34 2 74 2T

Notice how the sine values are positive betweem Awhich correspond to the values of
sine in quadrants 1 and 2 on the unit circle, &edytvalues are negative betweto
2n representing quadrants 3 and 4.
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_H 9(6) = cosp)

| ] ] ] | | 0
l l l
32 g 27

Like the sine function we can track the value & tlosine function through the 4
guadrants of the unit circle as we place it onaplr

Both of these functions are defined on a domaiallalal numbers, since we can
evaluate the sine and cosine of any angle. Bxitgnof sine and cosine as points on a
unit circle, it becomes clear that the range ohldahctions must be the intervigt  1,1]

Definition
Domain and Range of Sineand Cosine
The domain of sine and cosine is all real numbef$[]1 or (—c,+o)

The range of sine and cosine is the interval [}1, 1

Both these graphs are considessuisoidal graphs.

In both graphs, the shape of the graph begins tiegeafter Z.. Indeed, since any
coterminal angles will have the same sine and eositues, we could conclude that
sin(@+2n) =sin(@) andcos@ +2n) =cos@ ).

In other words, if you were to shift either grapribontally by 2, the resulting shape
would be identical to the original function. Sioidal functions are a specific type of
periodic function.

| The period is 2 for both the sine and cosine function.

Looking at these functions on a domain centereteavertical axis helps reveal
symmetries.
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sine cosine

The sine function is symmetric about the origire, $§ame symmetry the cubic function
has, making it an odd function. The cosine funcigdearly symmetric about thyeaxis,
the same symmetry as the quadratic function, makiag even function.

Negative angle identities
The sine is an odd function, symmetric aboutdhgin, sosin(-6) = -sin(@)
The cosine is an even function, symmetric abouytheis, socos-6) =cos@ )

These identities can be used, among other purpfasd®lping with simplification and
proving identities.

You may recall the cofunction identity from lastaphersin(@) = 00{7—27— 9).

Graphically, this tells us that the sine and cogiraphs are horizontal transformations of
each other. We can prove this by using the cofondtientity and the negative angle
identity for cosine.

i) =co{ 6] -cof -0+ of o~ -cof -1

Now we can clearly see that if we horizontally sthie cosine function to the right y2
we get the sine function.

Remember this shift is not representing the peoiditie function. It only shows that the
cosine and sine function are transformations of exilcer.

... sin(-6)
Simplify —tan(H)
sin(-6)
tan@)

:sin(H)
tan@)

Using the even/odd identity

Rewriting the tangent
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_sin@) . o
_—sin(éy Inverting and multiplying
cosp)
=sin@) 29 simplifying we get
sin(@)
=cosp)

Transforming Sineand Cosine

A point rotates around a circle of radius 3. 3l
Sketch a graph of thecoordinate of the
point.

Recall that for a point on a circle of radiys
they coordinate of the point ig =rsin@ ,)
S0 in this case, we get the

equationy(6) = 3sin(@ )

I

a3t
Since the 3 is multiplying the function, this casisevertical stretch of thevalues of
the function by 3.

Notice that the period of the function does notgjea

Since the outputs of the graph will now oscillagtvizeen -3 and 3, we say that the
amplitude of the sine wave is 3.

1. What is the amplitude of the equatib(d) = 7cos@ ? )Sketch a graph of the
function.

xample 3

A circle with radius 3 feet is mounted with its tam4

feet off the ground. The point closest to the gibis

labeledP. Sketch a graph of the height above ground of

the pointP as the circle is rotated, then find an equation

for the height. 4t
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Sketching the height, we note that it will 5
start 1 foot above the ground, then increas
up to 7 feet above the ground, and continu |
to oscillate 3 feet above and below the 5l
center value of 4 feet. 4
i
2

Although we could use a transformation of
either the sine or cosine function, we start
looking for characteristics that would make ;
one function easier than the other. g4

We decide to use a cosine function because isstathe highest or lowest value, while
a sine function starts at the middle value. Wevkitdhas been reflected because a
standard cosine starts at the highest value, andtaph starts at the lowest value.

Second, we see that the graph oscillates 3 abavbelow the center, while a basic
cosine has an amplitude of one, so this graph &as bertically stretched by 3, as in
the last example.

Finally, to move the center of the circle up toedgiht of 4, the graph has been vertically
shifted up by 4. Putting these transformation&toer,

h(6) = -3cosp) + 4

The center value of a sinusoidal function, the gahat the function oscillates above
and below, is called thmidline of the function, represented by the vertical shifthe

equation.

The equationf () = cos@) + k has midline ay = k.

2. What is the midline of the equatidi{d) = 3cos@) — ?4Sketch a graph of the
function.

To answer the Ferris wheel problem at the beginairtge section, we need to be able to
express our sine and cosine functions at inputsn&. To do so, we will utilize
composition. Since the sine function takes antigban angle, we will look for a
function that takes time as an input and outputarggte. If we can find a suitable

4(t) function, then we can compose this with 6¢#) = cos@ fuction to obtain a

sinusoidal function of timef (t) = cos@(t ))
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xample 4
A point completes 1 revolution every 2 minutes abuircle of radius 5. Find the
coordinate of the point as a function of time.

Normally, we would express thxecoordinate of a point on a unit circle
usingx =r cos@ ), here we write the functior(d) =5cos@ .)

The rotation rate of 1 revolution every 2 minuteam angular velocity. We can use this
rate to find a formula for the angle as a functbdétime. Since the point rotates 1
revolution = z radians every 2 minutes, i* X(60) 3
rotatest radians every minute. After /3
minutes, it will have rotated:
6(t) = it radians

L ]
P

Composing this with the cosine function,"’
we obtain a function of time.
X(t) =5cos@(t)) = 5cos(t)

[ N

Notice that this composition has the effect of azemtal compression, changing the
period of the function.

To see how the period is related to the stretatoorpression coefficier® in the
equationf (t) = sin(Bt), note that the period will be the time it takestonplete one full
revolution of a circle. If a point takésminutes to complete 1 revolution, then the

angular velocity isms. Thend(t) = Z—F?t . Composing with a sine function,

P minutes

f(t) =sin@(t)) = sin(z?ntj

From this, we can determine the relationship betwvtke equation form and the period:
2 . . L .
= Fn Notice that the stretch or compression coefficiis a ratio of the “normal
period of a sinusoidal function” to the “New Pe&lid If we know the stretch or

: - : 2
compression coefficier®, we can solve for the “New periodP = En
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What is the period of the functiof(t) = sin(gtj ?

Using the relationship above, the stretch/compoeskictor isB = % so the period

will be P=2—2=27T[-E—12
K Via
6

While it is common to compose sine or cosine witihctions involving time, the
composition can be done so that the input represent reasonable quantity.

xample 6

A bicycle wheel with radius 14 inches has the tapstipoint on the wheel marked in
red. The wheel then begins rolling down the stré®tite a formula for the height
above ground of the red point after the bicycle thagelledx inches.

In this casex is representing a linear distance the wheel has

travelled, corresponding to an arclength alongcthee.

Since arclength and angle can be related by &, in this Q
case we can write =146, which allows us to express the

: X

angle in terms ok: 6(x) = 14 X

Composing this with a cosine function,

h(x) = cos@(x)) = co{lj = co{i xj

14 14
: : . 2n _2n ,
The period of this function would bié = BT =214 =28, the circumference
14

of the circle. This makes sense — the wheel complete full revolution after the
bicycle has travelled a distance equivalent tocthmimference of the wheel.

Summarizing our transformations so far:
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Transformations of sineand cosine
Given an equation in the forrh(t) = Asin(Bt)+k or f(t) = AcogBt)+k
Ais the vertical stretch, and is tamplitude of the function.

B is the horizontal stretch/compression, and igedl#o theperiod, P, by P =2_E;2

kis the vertical shift, determines thedline of the function

Determine the midline, amplitude, and period offtimection f (t) = 3sin(2t)+1.

The amplitude is 3

The midline is atg(t) = 1

Amplitude, midline, and period, when combined withtiad flips, are enough to allow
us to write equations for a large number of sinussduations.

Try it Now!
3. If a sinusoidal function starts on the midline airp (0,3), has an amplitude of 2,
and a period of 4, write an equation with these festu
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Write an equation for the sinusoidal 4t
function graphed here.

The graph oscillates from a low of -1 to a
high of 3, putting the midline gt= 1,
halfway between.

Y 5 2 1 [ 2 ¥ 4 5 6 7
The amplitude will be 2, the distance fron | v

the midline to the highest value (or lowes
value) of the graph. 24

The period of the graph is 8. We can measurdtibms the first peak at = -2 to the
second ak = 6. Since the period is 8, the stretch/compoestactor we will use will be

At x = 0, the graph is at the midline value, which taBghe graph can most easily be
represented as a sine function. Since the graghdbcreases, this must be a vertical
reflection of the sine function. Putting this talether,

f(t) = —ZSin(%th +1

With these transformations, we are ready to answeeFerris wheel problem from the
beginning of the section.

The London Eye is a huge Ferris wheel with diame3érrheters (443 feet) in London,
England, which completes one rotation every 30 nesuRiders board from a platform
2 meters above the ground. Express a rider’s hagh function of time.

With a diameter of 135 meters, the wheel has a saafi67.5 meters. The height will
oscillate with amplitude of 67.5 meters above ardvwéehe center.

Passengers board 2 meters above ground levele setiter of the wheel must be
located 67.5 + 2 = 69.5 meters above ground leVbe midline of the oscillation will
be at 69.5 meters.

The wheel takes 30 minutes to complete 1 revolusorthe height will oscillate with
period of 30 minutes.

Lastly, since the rider boards at the lowest pah,height will start at the smallest
value and increase, following the shape of a flippesine curve.




Section 6.1 Sinusoidal Graphs 247

Putting these together:
Amplitude: 67.5

Midline: 69.5

Period: 30, sB = 2 =7
30 15

Shape: -cos

An equation for the rider’s height would be

h(t) = —67.5co{ﬂtJ +695
15

4. The Ferris wheel at the Puyallup I!atias a diameter of about 7( ~

feet and takes 3 minutes to complete a full rotatiBassengers {5
board from a platform 10 feet above the ground.ité&\tm
equation for a rider’s height over time.

While these transformations are sufficient to repree a majority of situations,
occasionally we encounter a sinusoidal function dogs not have a vertical intercept at
the lowest point, highest point, or midline. Inghecases, we need to use horizontal
shifts. Recall that when the inside of the funci®factored, it reveals the horizontal
shift.

Horizontal shifts of sineand cosine
Given an equation in the forrh(t) = Asin(B(t — h))+k or f(t) = AcodB(t —h))+k
h is the horizontal shift of the function

xample 10
Sketch a graph of (t) = Ssin(%rt —%Tj

To reveal the horizontal shift, we first need totésénside the function:

f(t) = 3sin(7zT (t —1))

2 Photo by photogirl7. Ihttp://www.flickr.com/photos/kitkaphotogirl/4328863/sizes/z/ CC-BY




248 Chapter 6

This graph will have the shape of a sine functitextsg at the midline and increasing,

with an amplitude of 3. The period of the graph WwélP = ZEH _2n 277[—!4l =8.
T
4

Finally, the graph will be shifted to the right by 1

4..
31
2-.
74
/ 3 3 4 6 7 & i

rat
ot
hodhore L

In some physics and mathematics books, you will tteahorizontal shift referred to as
phase shift. In other physics and mathematics books, they dvsay the phase shift of

the equation above r%?- the value in the unfactored form. Because & #mbiguity, we

will not use the term phase shift any further.

xample 11
Write an equation for the function graphed here.

With highest value at 1 and lowest value at -5, H
the midline will be halfway between at -2. "

The distance from the midline to the highest or
lowest value gives an amplitude of 3.

The period of the graph is 6, which can be

measured from the peakyat 1 to the second -6
peak atx = 7, or from the distance between the lowest poiifitss gives for our
. 2n _n
equationB=—=—=—
6 3

For the shape and shift, we have an option. Wedaaither write this as:
A cosine shifted 1 to the right

A negative cosine shifted 2 to the left

A sine shifted % to the left

A negative sine shifted 2.5 to the right
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While any of these would be fine, the cosine shiftsclearer than the sine shifts in this
case, because they are integer values. Writirgethe

y(x) = BCO{g(X —1)) -2 or

y(x) = —300{7—37 (x+ 2)) -2

Again, these equations are equivalent, so both itbesttre graph.

Try it Now
5. Write an equation for the function graphed
here.

9
8
]
5
4
Ki
2
i

;};'254'3’5:}39:'0:'::'2

Important Topics of This Section
Periodic functions
Sine & Cosine function from the unit circle
Domain and Range of Sine & Cosine function
Sinusoidal functions
Negative angle identity
Simplifying expressions
Transformations
Amplitude
Midline
Period
Horizontal shifts

Try it Now Answers

1.7
2.-4

3. f(x)= Zsin(l—;xj + 3

4. h(t) = —3500{2?”tj+ 4t

5. Two possibilities:f (x) :4co{g - 3.5ﬂ+ cor f(x)= 4sin(g x- 1)j+ 4
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Section 6.2 Graphs of the Other Trig Functions

In this section, we will explore the graphs of thieestfour trigopnometric functions.
We'll begin with the tangent function. Recall thatchapter 5 we defined tangentyas
or sine/cosine, so you can think of the tangenhaslope of a line from the origin at the
given angle. At an angle of O, the line would bezwrtal with a slope of zero. As the
angle increases towardg, the slope increases more and more. At an arfigi, the
line would be vertical and the slope would be unasfinimmediately past/2, the line
would be decreasing and very steep giving a largathe tangent value. There is a
break in the function at/2, where the tangent value jumps from large pasitoviarge
negative.

| 44 |
We can use these ideas along with the definition | 3l |
tangent to sketch a graph. Since tangent is dfin ;

as sine/cosine, we can determine that tangent wi 21

be zero when sine is zero: af0,x, and so on. § It §

Likewise, tangent will be undefined when cosine ; :

zero: atw/2,n/2, and so on. /T /2 2 x
i - i

The tangent is positive from 0 #2 andr to 3t/2,
corresponding to quadrants 1 and 3 of the unit :
circle. T .
T i
Using technology, we can obtain a graph of tangera standard grid.

2+

Notice that the graph appears to repeat itself. For
any angle on the circle, there is a second angle wi
the same slope and tangent value halfway around
circle, so the graph repeats itself with a period;of
we can see one continuous cycle from2-ton/2,
before it jumps & repeats itself.

— o e

The graph has vertical asymptotes and the tanger
undefined wherever a line at the angle would be
vertical — att/2, 31/2, and so on. While the domain
of the function is limited in this way, the rangeté
function is all real numbers.

Aodoro L

The graph of the tangent function m(6) = tan(©)
Theperiod of the tangent function is

Thedomain of the tangent function 8 # g +k7r, wherek is an integer

Therange of the tangent function is all real numbexg,] [0 or (—co,+c0)
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With the tangent function, like the sine and cosurections, horizontal
stretches/compressions are distinct from verticatches/compressions. The horizontal
stretch can typically be determined from the pedbthe graph. With tangent graphs, it
is often necessary to solve for a vertical streting a point on the graph.

xample 1
Write an equation for the function
graphed here.

The graph has the shape of a tangent
function, however the period appears 1
be 8. We can see one full continuous . . . . . . .
cycle from -4 to 4, suggesting a 8 6 4 2 24 R
horizontal stretch. To stretatto 8, the -2+
input values would have to be 4l

multiplied byé. Since the value in the 61
T

equation to give this stretch is the
reciprocal, the equation must have form

= T
f(@) = atar( : HJ

We can also think of this the same way we did witle sind cosine. The period of the
tangent function isz but it has been transformed and now it is 8, renggrtiie ratio of

the “normal period” to the “new period” %and so this becomes the value on the

inside of the function that tells us how it was honitally stretched.

To find the vertical stretch, we can use a point on the graph. Using the pajr)(
o=atad Zr2|=atarl *|. Sinceta ~ =1, a=2
8 4 4

This graph would have equatioin(@) = 2tar{g9j

1. Sketch a graph of (6) = 3tar(g0j
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1
cos@)

Notice that the function is undefined when the cosr® leading to a vertical asymptote
in the graph at/2, 3t/2, etc. Since the cosine is always less thanmabsolute value,
the secant, being the reciprocal, will always betgraaan one in absolute value. Using
technology, we can generate the graph. The grafiteafosine is shown dashed so you
can see the relationship.

f(6) =secf) = %

For the graph of secant, we remember the reciprdeatity wheresecf) =

The graph of cosecant is similar. In fact, sisa®f) = CO{]—ZT— Hj, it follows that

cscf) = se{z— j , suggesting the cosecant graph is a horizonttlatthe secant

2

graph. This graph will be undefined where sine. ig@call from the unit circle that this
occurs at Ogx, 2, etc. The graph of sine is shown dashed alongtivglgraph of the
cosecant.
1
f(8) =cscl) =———
© ©) sin(d)
44

fl
i
!

I 2 54 5 47

&
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Graph of secant and cosecant
The secant and cosecant graphs have peridié#e2the sine and cosine functions.

Secant has domaifi # g +k7r, wherek is an integer

Cosecant has domath# k7, wherek is an integer
Both secant and cosecant have range-of,—1] [I [1, o )

Sketch a graph of (6) = ZCS{I—ZTHJ +1. What is the domain and range of this

function?

The basic cosecant graph has vertical asymptotée atultiples oft. Because of the

7. . . :
factorE in the equation, the graph will be compressedgb)so the vertical
T

asymptotes will be compressedéc- 2 (krr=2k. In other words, the graph will have
Vg

vertical asymptotes at the multiples of 2, anddbmain will correspondingly be
8 # 2k , wherek is an integer.

The basic sine graph has a range of [-1, 1]. Emoal stretch by 2 will stretch this to
[-2, 2], and the vertical shift up 1 will shift tmange of this function to [-1, 3].

The basic cosecant graph has a range-®f—1] (I [L,o . Th§ vertical stretch by 2 will
stretch this ta(—c,-2] [0 [2,00 )and the vertical shift up 1 will shift the rangetus
function to (—oo,—1] I [3,0 )

Sketching a graph,
64
54
g /
34
21,
i- :
"ll 1
) s P

Notice how the graph of the transformed cosecante®la the graph of
£(8) = 25in(7—2T6’j +1 shown dashed.
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Try it Now
2. Given the graphf (6) = 200{ HJ +1 ;
shown, sketch the graph of
g(6) = ZSe{I—ZTHJ +1 on the same axes\ /\ /
PR VAT
o
"

Finally, we’ll look at the graph of cotangent. Bdsmn its definition as the ratio of cosine
to sine, it will be undefined when the sine is zeat at Oz, 21, etc. The resulting graph
is similar to that of the tangent. In fact, itisrizontal flip and shift of the tangent
function.

£(6) = cot(d) = —~_ = 056)

tan(@ sin(f)
,1[ 1

31

[2F]

Graph of cotangent

The cotangent graph has period

Cotangent has domaifi# k7, wherek is an integer
Cotangent has range of all real numbrfs[] or (—oo,+o0)

In 6.1 we determined that the sine function was ahfodction and the cosine was an
even function by observing the graph, establishiregnegative angle identities for cosine
and sine. Similarily, you may notice that the drab the tangent function appears to be
odd. We can verify this using the negative andémtities for sine and cosine:

e e
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The secant, like the cosine it is based on, isvan éunction, while the cosecant, like the
sine, is an odd function.

Identities

Negative angleidentities for tangent, cotangent, secant, and cosecant
tan(- 6) = —tan(6) cot(- 8) = —cot()

sed- 6) = sed0) csd-6) = —csdb)

Prove thattan(g) = - cot(é? - gj

tan(8) Using the definition of tangent

= sm(H) Using the cofunction identities
cod6)

Using the definition of cotangent

= cot(l—ZT - HJ Factoring a negative from the inside

= co{— (H—I—ZTD Using the negative angle identity for cot

Important Topics of This Section

The tangent and cotangent functions
Period
Domain
Range

The secant and cosecant functions
Period
Domain
Range

Transformations

Negative Angle identities
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Try it Now Answers
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1

24
]

ral
4

Af]

/5 I JEIEN

2.




Section 6.3 Solving Trig Equations 257

Section 6.3 Solving Trig Equations

In section 6.1, we determined the height of a ratethe London Eye Ferris wheel could

be determined by the equatibit) = —67.500{%tj +695. How long is the rider more

than 100 meters above ground? To answer questikenthis, we need to be able to
solve equations involving trig functions.

Solving using known values

In the last chapter, we learned sine and cosineesaticommonly encountered angles.
We can use these to solve sine and cosine equatirising these common angles.

Solve sin(t) :%for all possible values of t

Notice this is asking us to identify all angleghat have a sine value of %.. While
evaluating a function always produces one resoii¥jrsg can have multiple solutions.

Two solutions should immediately jump to mind frame {ast chaptert :% and

t= % because they are the common angles on the ucii.cir

Looking at a graph confirms that there are more thase two solutions. While eight
are seen on this graph, there are an infinite nummibsolutions!

I+
IE-H-MWﬁ 5 4 32 -] 1 2 _aw 7 8 QW
J4
Remember that any coterminal angle will also haeestime sine value, so any angle

coterminal with these two is also a solution. Quoieal angles can be found by adding
full rotations of 2z, so we end up a set of solutions:

t= g + 27k wherek is an integer, ant= % + 27K wherek is an integer

A circle of radius5v2 intersects the ling = -5 at two points. Find the angléson the
interval 0< 8 < 2711, where the circle and line intersect.
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Thex coordinate of a point on a circle can be foundasr codd), so thex coordinate

of points on this circle would be =5v2cod6). To find where the ling = -5
intersects the circle, we can solve for wherextlalue on the circle would be -5

-5=5/2cod6) Isolating the cosine

-1 -1_-+2

— =cog/ Recall that—= = ——, so we are solvin

N {6) 72 g
84

codd) = \/_

We can recognize this as one of our special cosihees 5173
from our unit circle, and it corresponds with arsgle

0="andg=>""
4 4

1. Solvetan(t) = 1for all possible values of t

The depth of water at a dock rises and falls withttde, following the equation
f(t)= 4sin(1—7;tj +7, wheret is measured in hours after midnight. A boat respia

depth of 9 feet to come to the dock. At what small the depth be 9 feet?

To find when the depth is 9 feet, we need to sallienf(t) = 9.

4sin(1—7;tj +7=9 Isolating the sine
4sin(£t} =2 Dividing by 4
12
sinf Z¢|=1 We knowsin(6) = L heno=2 o ="
12 2 2 6 6

While we know what angles have a sine value ofééabse of the horizontal
stretch/compression, it is less clear how to prdceko deal with this, we can make a

. . . n .
substitution, defining a new temporary variabl® beu = Et , SO our equation
becomes

sin(u) ==
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From earlier, we saw the solutions to this equatvene

u =%+ 27k wherek is an integer, and

u =5?n + 27Kk wherek is an integer

Undoing our substitution, we can replace tha the solutions withu = 1_722,[ and solve

for t.

Ly =%+ 27k wherek is an integer, andl%t =5?n + 27K wherek is an integer.

12
Dividing by n/12, we obtain solutions

t =2+ 24k wherek is an integer, and 124
t =10+ 24k wherek is an integer. 104

8..
The depth will be 9 feet and boat will be /6/

able to sail between 2am and 10am.
4__

Notice how in both scenarios, thek24 21
shows how every 24 hours the cycle will
be repeated.

2 4 6 & 10 12 14 16 18 20 22 24

In the previous example, looking back at the oagsimplified equatiorsin(l—ZtJ :%,

we can use the ratio of the “normal period” to shretch factor to find the period.

2—77; = 2/1(1—2j = 24; notice that the sine function has a period gfi#dich is reflected
T

5

in the solutions; there were two unique solutionone full cycle of the sine function,

and additional solutions were found by adding npigs of a full period.

2. Solve 4sin(5t)-1=1 for all possible values of t
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Theinversetrig functions

The solutions tasin(6) = 0.3 cannot be expressed in terms of functions we dyr&aow.
To represent the solutions, we need a function“tiratoes” the sine function. What we
need is an inverse. Recall that for a one-to-anetfon, if f (a) =b, then an inverse

function would satisfyf ™(b) = a.

You probably are already recognizing a problemat the sine, cosine, and tangent
functions are not one-to-one functions. To definanverse of these functions, we will
need to restrict the domain of these functionstthat theyare one-to-one. We choose a
domain for each function which includes the andleevo.

T

2

Sine, limited to[—g,g} Cosine, limited tc{O,n] Tangent, limited t({—

NN

2! 1

P R PN

-2 T2 /. T /2

54
On these restricted domains, we can define thesev&ne and cosine and tangent
functions.

Definition
Theinversesine, cosine and tangent functions
For angles in the interv{l—g,l—; , if sin(@) = a, thensin*(a) =4
For angles in the interv4o, 7], if—cos(H) =a, thencos?(a)=4
For angles in the interv{l—g,l—zf ,if tan(g) = a, thentan™(a) =@

sin"(a) has domain [-1, 1] and ran%el—;g}

cos*(a) has domain [-1, 1] and rande 7]

tan™(a) has domain of all real numbers and raEg

NPy

3

The sin™(a) is sometimes called thacsine function, and notatedrcsir{a)
The cos™(a) is sometimes called tha ccosine function, and notatedrcco$a)
The tan*(a) is sometimes called tha ctangent function, and notatedrctar{a)
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sin™(x) cos*(x) tan™ (x)

It H
2__
N 7 ST s e 12443
I+
S -1

24 i 2

Notice that the output of the inverse functionansngle.

xample 4
Use the inverse to find one solutiongin(@) = 0.8

Since this is not a known unit circle value, cadding the inversed = sin*(0.8). This
requires a calculator and we must approximate @eviar this angle. If your calculator
is in degree mode, your calculator will give yodeggree angle as the output. If your
calculator is in radian mode, your calculator \gilfe you a radian angle as the output.

In radians,@ = sin™(0.8) = 0.929, or in degreesd =sin™*(0.§ = 53.130

If you are working with a composed trig functiordayou are not solving for an angle,
you will want to ensure that you are working iniea. Since radians are a unitless
measure, they don’t intermingle with the resultwesy degrees would.

Notice that the inverse trig functions do exactlyalvyou would expect of any function —
for each input they give exactly one output. Witils is necessary for these to be a
function, it means that to fina| the solutions to an equation lilsin(6) = 0.8, we need

to do more than just evaluate the inverse.

xample 5
Find all solutions tsin(6) = 0.8.

We would expect two unique angles on one cycleateh Tod TS
this sine value. In the previous example, we foond p
solution to bed = sin"*(0.8) = 0.929. To find the other, we 0.929

need to answer the question “what other angletiasame
sine value as an angle of 0.929?” On a unit Girgke
would recognize that the second angle would hagesdime
reference angle and reside in the second quadidus.
second angle would be locatedét 77-0.929=2. 213
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To find more solutions we recall that angles cotaeaihwith these two would have the
same sine value, so we can add full cyclesmof 2

6 =0.929+ 27k wherek is an integer, and = 2.213+ 27k wherek is an integer

Find all solutions tasin(x) = —g on the interval0® < x < 360°

First we will turn our calculator to degree modésing the inverse, we can find a first

solution x = sin‘l(—gj = -62.734°. While this angle satisfies the equation, it doet

lie in the domain we are looking for. To find thegles in the desired domain, we start
looking for additional solutions.

First, an angle coterminal with 62.734° will have the same sine. By adding a full
rotation, we can find an angle in the desired domath the same sine.
X=-62734 + 360 = 297.266°

There is a second angle in the desired domaidi#sain the third quadrant. Notice that
62.734 is the reference angle for all solutions, se fi@cond solution would be
62734 pastl8C

X=62734 +180° =24273%#

The two solutions o®° < x < 360° arex = 297.266° andx = 242734

Find all solutions tatan(x) =3 on 0< x < 27

Using the inverse, we can find a first solutivr tan‘1(3) = 1.259. Unlike the sine and

cosine, the tangent function only reaches any dwtglue once per cycle, so there is not
a second solution on one period of the tangent.

By addingr, a full period of tangent function, we can findecond angle with the same
tangent value. If additional solutions were deakisge could continue to add multiples
of «t, so all solutions would take on the forxr 1.259+ kn , however we are only
interested iN0< x< 27.

x=1.259+ 71 =4.391

The two solutions o < x< 271 arex = 1.2597 anck = 4.391
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Try it Now

3. Find all solutions tatan(x) = 0.7 on 0° < x < 360°

Solve 3codt)+4 = 2 for all solutions on one cycl€ < x < 27

3codt)+4=2 Isolating the cosine
3codt) = -2

codt) = -

winN

Using the inverse, we can find a first solution

t= cos‘l(—gj = 2301

Thinking back to the circle, the second angle whth same cosine would be located in
the third quadrant. Notice that the location a$ #ingle could be represented as

t =-2.301. To represent this as a positive angle we cdoltld coterminal angle by
adding a full cycle.

t =-2.301+2n = 3.982

The equation has two solutions on one cyclé~a2.301 and = 3.982

Solve cog3t) = 02 for all solutions on two cycle€) < x < 47

As before, with a horizontal compression it carhblpful to make a substitution,
u=3t. Making this substitution simplifies the equationa form we have already
solved.

coqu) = 0.2

u=cos?(02)=1.369

A second solution on one cycle would be locatethenfourth quadrant with the same
reference angle.
u=2n-1369=4914

In this case, we need all solutions on two cydesye need to find the solutions on the
second cycle. We can do this by adding a fulltrotteto the previous two solutions.
u=1369+2n1=7.653

u=4914+2mr=11197
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Undoing the substitution, we obtain our four salos:
3t =1.369, sd = 0.456

3t=4.914sd=1.638

3t =7.653, sd =2.551

3t=11.197,sa=3.732

4. Solve 55in(gtj +3=0 for all solutions on one cycl®<t<2n

Definition
Solving Trig Equations
1) Isolate the trig function on one side of the ecurati
2) Make a substitution for the inside of the sine asine
3) Use the inverse trig functions to find one solution
4) Use symmetries to find a second solution on on&dyehen a second exists)
5) Find additional solutions if needed by adding pdtiods
6) Undo the substitution

We now can return to the question we began théoseeith.

xample 10
The height of a rider on the London Eye Ferris wicaa be determined by the equation

h(t) = —67.5co{1—7;tJ +69.5. How long is the rider more than 100 meters above

ground?

To find how long the rider is above 100 meters fingt solve for the times at which the
rider is at a height of 100 meters by solvirf = 100.

100= —67.500{1—7;tj +695 Isolating the cosine
305= —67.500{£tj
15
305 cod Lt We make the substitutian= "t
-675 15 15
305 . . . .
——— =cos{) Using the inverse, we find one solution
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u=cos" 305 ) 2.040
675

This angle is in the second quadrant. A seconttamigh the same cosine would be
symmetric in the third quadrant.
u=2n-2040= 4244

Now we can undo the substitution to solvetfor

1—7;t = 2,040 sot = 9.740 minutes

1—7;t = 4,244 sot = 20.264 minutes

A rider will be at 100 meters after 9.740 minutmsd again after 20.264. From the
behavior of the height graph, we know the ridet @ above 100 meters between these
times. A rider will be above 100 meters for 20.86%40 = 10.523 minutes of the ride.

Important Topics of This Section

Solving trig equations using known values
Using substitution to solve equations
Inverse trig functions
arcsine, arccosine and arctangent
Domain restrictions
Calculator Techniques
Finding answers in one cycle or period vs Findilhgassible solutions
Method for solving trig equations

Try it Now Answers

1. Tk
4

2. t:£+2_nk t:£+2_nk
30 5 6 5
Xx=34.99 or x=180- 34.99= 145.(71

t=3.5900rt=2.41C

Hw
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Section 6.4 Modeling with Trigonometric Equations

Solving right trianglesfor angles

In section 5.5, we worked with trigonometry onghtitriangle to solve for the sides of a
triangle given one side and an additional anglsing/the inverse trig functions, we can
solve for the angles of a right triangle given tsides.

An airplane needs to fly to an airfield located 30iles east and 200 miles north of its
current location. At what heading should the aing fly? In other words, if we ignore
air resistance or wind speed, how many degreek nbdast should the airplane fly?

We might begin by drawing a picture and labelingl

the known information. Drawing a triangle, we se=

are looking for the angle. In this triangle, the side 200
opposite the angle is 200 miles and the side adjacent a

is 300 miles. Since we know the values for the 300

opposite and adjacent sides, it makes sense tineise

tangent function.

tan@) = %) Using the inverse,

a= tan‘l(%ogj = 0.588, or equivalently about 33.7 degrees.

The airplane needs to fly at a heading of 33.7 eleggnorth of east.

xample 2
OSHA safety regulations require that the baselatlder be placed 1 foot from the wall
for every 4 feet of ladder lengthFind the angle the ladder forms with the ground.

For any length of ladder, the base needs to bethiabfaway from the

wall. Equivalently, if the base &feet from the wall, the ladder can ke 4
feet long. Sincea is the side adjacent to the angle andsthe da
hypotenuse, we use the cosine function.

a 1 . .
cos@)=—==— Using the inverse
6) 4a 4 g a

6= cos‘lej = 7552 degrees

The ladder forms a 75.52 degree angle with thergiou

? http://www.osha.gov/SLTCletools/construction/fatladders.html
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Try it Now
1. One of the cables that anchor to the center oLtimelon Eye Ferris wheel to the
ground must be replaced. The center of the Feheel is 69.5 meters above the
ground and the second anchor on the ground is 28rsnieom the base of the Ferris
wheel. What is the angle of elevation (from groumpdo the center of the Ferris
wheel) and how long is the cable?

In a video game design, a map shows the locatiathafr characters relative to the
player, who is situated at the origin, and thediom they are facing. A character
currently shows on the map at coordinates (-3,//Bhe player rotates
counterclockwise by 20 degrees, then the objediseémmap will correspondingly rotate
20 degrees clockwise. Find the new coordinatesetharacter.

To rotate the position of the character, we carginait
as a point on a circle, and we will change the el
the point by 20 degrees. To do so, we first nedtht
the radius of this circle and the original angle.

Drawing a triangle in the circle, we can find tlaglius
using Pythagorean Theorem:

(-3) +5 =r?

r =+/9+25=/34

To find the angle, we need to decide first if we going to find the acute angle of the
triangle, the reference angle, or if we are gom@irtd the angle measured in standard
position. While either approach will work, in thaase we will do the latter. Since for
any point on a circle we know=r cos@ , pdding our given information we get

-3= \/3_40056)

-3
—— =cosp)
V34
4 =3
@=cos'| — |=120964
(\/34j

While there are two angles that have this cosimgeydhe angle of 120.964 degrees is
in the second quadrant as desired, so it is thie amgwere looking for.

Rotating the point clockwise by 20 degrees, thdeaofjthe point will decrease to
100.964 degrees. We can then evaluate the cotedinathe rotated point

X = +/340s(00964°) = —1.109
y =+/34sin(L00.964°) = 5.725

The coordinates of the character on the rotatedwnidpe (-1.109, 5.725)
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Modeling with sinusoidal functions

Many modeling situations involve functions that pegiodic. Previously we learned that
sinusoidal functions are a special type of periddicction. Problems that involve
guantities that oscillate can often be modeled biya or cosine function and once we
create a suitable model for the problem we carthessequation and function values to
answer the question.

The hours of daylight in Seattle oscillate fronoe lof 8.5 hours in January to a high of
16 hours in Juf, When should you plant a garden if you want tatdturing the
month where there are 14 hours of daylight?

To model this, we first note that the hours of dgyl oscillate with a period of 12
months. With a low of 8.5 and a high of 16, thelime will be halfway between these

values, at16+728'5 =1225. The amplitude will be half the difference betweke

highest and lowest value%:G_Zﬁ = 375, or equivalently the distance from the
midline to the high or low value, 16-12.25=3.75%tting January be= 0, the graph
starts at the lowest value, so it can be modeledfiygped cosine graph. Putting this
together, we get a model:

h(t) = —3.7500{%th +1225

-cos() represents the flipped cosine,

3.75 is the amplitude,

12.25 is the midline,

2n 112 = n/6 corresponds to the horizontal stretch, found bggithe ratio of the
“original period / new period”

h(t) is our model for hours of day lightmonths from January.

To find when there will be 14 hours of daylight, s@veh(t) = 14.

14= —3.75c0{7—67tj +1225 Isolating the cosine
175= —3.7500{%) Subtracting 12.25 and dividing by -3.75
e co{ﬂtj Using the inverse

375 6

* http://www.mountaineers.org/seattle/climbing/Refeze/DaylightHrs.html
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Try it Now

t = 2.05634- =3.927
T
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gt = cos‘l[—é'—;g = 2.0563 multiplying by the reciprocal

t=3.927 months past January

There will be 14 hours of daylight 3.927 month®itite year, or near the end of April.

While there would be a second time in the year wthere are 14 hours of daylight,
since we are planting a garden, we would want takthe first solution, in spring, so
we do not need to find the second solution in thise.

2. The author’s
monthly gas usage
(in therms) is shown
here. Find an
equation to model
the data.

160
140 +
120 +
100 +
80 +
60
40 +
20 +

I I I

j—D—D—D——ﬁ

L T T T T L

Jul Oct

Jan Feb Mar Apr May Jun Aug Sep Nov Dec

xample 6

An object is connected to the wall with a springtthas a
natural length of 20 cm. The object is pulled b&8aim past W

the natural length and released. The object asedl3 times

per second. Find an equation for the positiornefdbject

ignoring the effects of friction. How much timeeach cycle is the object more than 27
cm from the wall?

If we use the distance from the wadl,as the desired output, then the object will
oscillate equally on either side of the spring’sunal length of 20, putting the midline
of the function at 20 cm.

If we release the object 8 cm past the naturaltkeribe amplitude of the oscillation will
be 8 cm.

We are beginning at the largest value and so timstion can most easily be modeled
using a cosine function.

Since the object oscillates 3 times per secorftsta frequency of 3 and the period of
one oscillation is 1/3 of second. Using this welfthe horizontal compression using the

ratios of the periodslzlﬂ3 =617
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Using all this, we can build our model:
x(t) = 8cod67t) + 20

To find when the object is 27 cm from the wall, @an solvex(t) = 27

27 =8cod67) + 20 Isolating the cosine
7 =8cod67t)
g = cod67t) Using the inverse

67t = cos‘l(gj = 0.505

t= 0505 0.0268

6rr

Based on the shape of the graph, we can  ,,|
conclude that the object will spend the first 5,
0.0268 seconds more than 27 cm from the 2
wall. Based on the symmetry of the functior 2o,
the object will spend another 0.0268 second s
more than 27 cm from the wall at the end of 5
the cycle. Altogether, the object spends 14
0.0536 seconds each cycle more than 27 cri
from the wall. 104

ol 02 03 04 05 06 07 0.8 09 |

In some problems, we can use the trigopnometrictions to model behaviors more
complicated than the basic sinusoidal function.

xample 7

A rigid rod with length 10 cm is attached
to a circle of radius 4cm at poiAtas
shown here. The poilis able to freely A
move along the horizontal axis, driving a forn L0cm
pistorT. If the wheel rotates

counterclockwise at 5 revolutions per

minute, find the location of poifg as a

function of time. When will the poiri
be 12 cm from the center of the circle?

_|UJ

To find the position of poinB, we can begin by finding the coordinates of péint
Since it is a point on a circle with radius 4, ves @xpress its coordinates as
(4cos@),4sin(@)) .

® For an animation of this situation, dep://mathdemos.gcsu.edu/mathdemos/sinusoidapipéshgif
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The angular velocity is 5 revolutions per seconcequivalently 1@ radians per
second. Aftet seconds, the wheel will rotate I8y=1071 radians. Substituting this,
we can find the coordinates Afin terms oft.

(4cos0nt),4sin(0rt))

Notice that this is the same value we would havainbd by noticing that the period of
the rotation is 1/5 of a second and calculatingstihetch/compression factor

original" 27n 107,

" new’ }é

Now that we have the coordinates of the point
A, we can relate this to the poit By A

drawing a vertical line fronA to the / 10 cm
horizontal axis, we can form a triangle. The B

height of the triangle is thecoordinate of the b
pointA: 4sin@07t). Using the Pythagorean
Theorem, we can find the base length of the

triangle:

(4sinort))? +b? =107
b? =100-16sin® (107t)
b = /100~ 16sin? (L07t)

Looking at thex coordinate of the poimk, we can see that the triangle we drew is
shifted to the right of thg axis by4cos(07t2 ). Combining this offset with the length

of the base of the triangle gives theoordinate of the poirB:
X(t) = 4c0s(L07t) +/100~16sin? (L07)

To solve for when the poirg will be 12 cm from the center of the circle, weedeo
solvex(t) = 12.

12 =4cos(0rt) + \/100—16$in2 @0rt) Isolate the square root
12-4cos(0rt) = \/100—16$in2 @0rt) Square both sides
(12- 4cos(07t))’ =100-16sin? (LO7) Expand the left side

144-96¢0s(07t) +16c0s” (L07t) =100-16sin® (1071)  Move terms of the left
44-96c0s(07t) +16cos (107t) +16sin® (LO7t) =0 Factor out 16
44-96c0s(07t) +16(cos (L07t) +sin® (L07t)) = O

At this point, we can utilize the Pythagorean ldgntvhich tells us that
cos (107t) +sin® (LO7t) = 1.
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Using this identity, our equation simplifies to

44-96¢0s(Q07t) +16=0 Combine the constants and move to the right side
—-96¢c0s(07t) = -60 Divide
cos(0rt) = gg Make a substitution

60
cosfu) = 9%
u= cos‘l(g—gj = 0.896 By symmetry we can find a second solution
u=2n-0.896=5.388 Undoing the substitution

107t = 0.896, sot = 0.0285
107t =5.388, sot = 0.1715

The pointB will be 12 cm from the center of the circle affe®285 seconds, 0.1715
seconds, and every 11%f a second after each of those values.

Important Topics of This Section

Modeling with trig equations
Modeling with sinusoidal functions
Solving right triangles for angles in degrees aamlans

Try it Now Answers

1. Angle of elevation for the cable is 71.69 degres$the cable is 73.21 m long
2. Approximately G(t) =6600{§ {- 1ﬂ+ 8



