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Chapter 6: Periodic Functions 
In the previous chapter, the trigonometric functions were introduced as ratios of sides of a 
triangle, and related to points on a circle.  We noticed how the x and y values of the 
points did not change with repeated revolutions around the circle by finding coterminal 
angles. In this chapter, we will take a closer look at the important characteristics and 
applications of these types of functions, and begin solving equations involving them. 
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Section 6.1 Sinusoidal Graphs 
The London Eye1 is a huge Ferris wheel with diameter 
135 meters (443 feet) in London, England, which 
completes one rotation every 30 minutes.  When we 
look at the behavior of this Ferris wheel it is clear that it 
completes 1 cycle or 1 revolution and then repeats this 
revolution over and over again.   
 
This is an example of a periodic function, because the 
Ferris wheel repeats its revolution or one cycle every 30 
minutes, and so we say it has a period of 30 minutes. 
 
In this section, we will work to sketch a graph of a 
rider’s height over time and express the height as a 
function of time.   
 
 
Definition 

A periodic function occurs when a specific horizontal shift, P, results in the original 
function; where )()( xfPxf =+  for all values of x.   When this occurs we call the 
horizontal shift the period of the function.  

 
 
You might immediately guess that there is a connection here to finding points on a circle, 
since the height above ground would correspond to the y value of a point on the circle. 
We can determine the y value by using the sine function.  To get a better sense of this 
function’s behavior, we can create a table of values we know, and use them to sketch a 
graph of the sine and cosine functions.  
 
 
 
                                                 
1 London Eye photo by authors, 2010, CC-BY 
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Listing some of the values for sine and cosine on a unit circle, 
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Here you can see how for each angle, we use the y value of the point on the circle to 
determine the output value of the sine function. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Plotting more points gives the full shape of the sine and cosine functions. 
 

 
 
Notice how the sine values are positive between 0 to π which correspond to the values of 
sine in quadrants 1 and 2 on the unit circle, and the y values are negative between π to 

π2 representing quadrants 3 and 4. 
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Like the sine function we can track the value of the cosine function through the 4 
quadrants of the unit circle as we place it on a graph. 
 
Both of these functions are defined on a domain of all real numbers, since we can 
evaluate the sine and cosine of any angle.  By thinking of sine and cosine as points on a 
unit circle, it becomes clear that the range of both functions must be the interval ]1,1[− . 
 
 
Definition 

Domain and Range of Sine and Cosine 
The domain of sine and cosine is all real numbers, ℜ∈x  or ),( +∞−∞  
The range of sine and cosine is the interval [-1, 1] 

 
 
Both these graphs are considered sinusoidal graphs. 
 
In both graphs, the shape of the graph begins repeating after 2π.  Indeed, since any 
coterminal angles will have the same sine and cosine values, we could conclude that 

)sin()2sin( θπθ =+  and )cos()2cos( θπθ =+ . 
 
In other words, if you were to shift either graph horizontally by 2π, the resulting shape 
would be identical to the original function.  Sinusoidal functions are a specific type of 
periodic function. 
 
 
Definition 

The period is 2π for both the sine and cosine function. 
 
 
Looking at these functions on a domain centered at the vertical axis helps reveal 
symmetries. 
 
 
 
 

θ 

g(θ) = cos(θ) 



240  Chapter 6 
 

sine      cosine 

          
 
The sine function is symmetric about the origin, the same symmetry the cubic function 
has, making it an odd function. The cosine function is clearly symmetric about the y axis, 
the same symmetry as the quadratic function, making it an even function. 
 
 
Identities 

Negative angle identities 
The sine is an odd function, symmetric about the origin, so )sin()sin( θθ −=−  
The cosine is an even function, symmetric about the y-axis, so )cos()cos( θθ =−  

 
 
These identities can be used, among other purposes, for helping with simplification and 
proving identities. 

You may recall the cofunction identity from last chapter; 






 −= θπθ
2

cos)sin( .  

Graphically, this tells us that the sine and cosine graphs are horizontal transformations of 
each other.  We can prove this by using the cofunction identity and the negative angle 
identity for cosine. 
 








 −=








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

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



 +−=






 −=
2

cos
2

cos
2

cos
2

cos)sin(
πθπθπθθπθ    

 
Now we can clearly see that if we horizontally shift the cosine function to the right by π/2 
we get the sine function. 
 
Remember this shift is not representing the period of the function.  It only shows that the 
cosine and sine function are transformations of each other. 
 
 
Example 1 

Simplify 
)tan(

)sin(

θ
θ−

 

 

)tan(

)sin(

θ
θ−

  Using the even/odd identity 

=
)tan(

)sin(

θ
θ

  Rewriting the tangent 
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=

)cos(
)sin(

)sin(

θ
θ

θ
 Inverting and multiplying 

=
)sin(

)cos(
)sin(

θ
θθ ⋅  Simplifying we get 

= )cos(θ  
 
 
Transforming Sine and Cosine 
 
Example 2 

A point rotates around a circle of radius 3.  
Sketch a graph of the y coordinate of the 
point. 
 
Recall that for a point on a circle of radius r, 
the y coordinate of the point is )sin(θry = , 
so in this case, we get  the 
equation )sin(3)( θθ =y .   
 
Since the 3 is multiplying the function, this causes a vertical stretch of the y values of 
the function by 3.   
 
Notice that the period of the function does not change. 

 
 
Since the outputs of the graph will now oscillate between -3 and 3, we say that the 
amplitude of the sine wave is 3. 
 
 
Try it Now 

1. What is the amplitude of the equation )cos(7)( θθ =f ?  Sketch a graph of the 
function. 

 
 
Example 3 

A circle with radius 3 feet is mounted with its center 4 
feet off the ground.  The point closest to the ground is 
labeled P.  Sketch a graph of the height above ground of 
the point P as the circle is rotated, then find an equation 
for the height. 
 
 
 
 

3 ft 

4 ft 
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Sketching the height, we note that it will 
start 1 foot above the ground, then increase 
up to 7 feet above the ground, and continue 
to oscillate 3 feet above and below the 
center value of 4 feet. 
 
Although we could use a transformation of 
either the sine or cosine function, we start by 
looking for characteristics that would make 
one function easier than the other.  
 
We decide to use a cosine function because it starts at the highest or lowest value, while 
a sine function starts at the middle value.  We know it has been reflected because a 
standard cosine starts at the highest value, and this graph starts at the lowest value.   
 
Second, we see that the graph oscillates 3 above and below the center, while a basic 
cosine has an amplitude of one, so this graph has been vertically stretched by 3, as in 
the last example. 
 
Finally, to move the center of the circle up to a height of 4, the graph has been vertically 
shifted up by 4.  Putting these transformations together, 
 

4)cos(3)( +−= θθh  
 
 
Definition 

The center value of a sinusoidal function, the value that the function oscillates above 
and below, is called the midline of the function, represented by the vertical shift in the 
equation.  
 
The equation kf += )cos()( θθ  has midline at y = k. 

 
 
Try it Now 

2. What is the midline of the equation 4)cos(3)( −= θθf ?  Sketch a graph of the 
function. 

 
 
To answer the Ferris wheel problem at the beginning of the section, we need to be able to 
express our sine and cosine functions at inputs of time.  To do so, we will utilize 
composition.  Since the sine function takes an input of an angle, we will look for a 
function that takes time as an input and outputs an angle.  If we can find a suitable 

)(tθ function, then we can compose this with our )cos()( θθ =f  function to obtain a 
sinusoidal function of time: ))(cos()( ttf θ=  
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Example 4 
A point completes 1 revolution every 2 minutes around circle of radius 5.  Find the x 
coordinate of the point as a function of time. 
 
Normally, we would express the x coordinate of a point on a unit circle 
using )cos(θrx = , here we write the function )cos(5)( θθ =x . 
 
The rotation rate of 1 revolution every 2 minutes is an angular velocity.  We can use this 
rate to find a formula for the angle as a function of time.  Since the point rotates 1 
revolution = 2π radians every 2 minutes, it 
rotates π radians every minute.  After t 
minutes, it will have rotated: 

tt πθ =)(  radians 
 
Composing this with the cosine function, 
we obtain a function of time. 

)cos(5))(cos(5)( tttx πθ ==  
 

 
 
Notice that this composition has the effect of a horizontal compression, changing the 
period of the function. 
 
To see how the period is related to the stretch or compression coefficient B in the 
equation ( )Bttf sin)( = , note that the period will be the time it takes to complete one full 
revolution of a circle.  If a point takes P minutes to complete 1 revolution, then the 

angular velocity is 
minutes

radians2

P

π
.  Then t

P
t

πθ 2
)( = .  Composing with a sine function, 








== t
P

ttf
πθ 2

sin))(sin()(  

 
From this, we can determine the relationship between the equation form and the period:  

P
B

π2= .  Notice that the stretch or compression coefficient B is a ratio of the “normal 

period of a sinusoidal function”  to the “New Period.”   If we know the stretch or 

compression coefficient B, we can solve for the “New period”: 
B

P
π2= .   

 
 
 
 
 
 
 

θ 

x(θ) 
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Example 5 

What is the period of the function 






= ttf
6

sin)(
π

? 

 

Using the relationship above, the stretch/compression factor is 
6

π=B , so the period 

will be 12
6

2

6

22 =⋅===
π

ππ
ππ

B
P . 

 
 
While it is common to compose sine or cosine with functions involving time, the 
composition can be done so that the input represents any reasonable quantity. 
 
Example 6 

A bicycle wheel with radius 14 inches has the top-most point on the wheel marked in 
red.  The wheel then begins rolling down the street.  Write a formula for the height 
above ground of the red point after the bicycle has travelled x inches. 
 
In this case, x is representing a linear distance the wheel has 
travelled, corresponding to an arclength along the circle.  
Since arclength and angle can be related by θrs = , in this 
case we can write θ14=x , which allows us to express the 

angle in terms of x:  
14

)(
x

x =θ  

 
 
Composing this with a cosine function, 








=






== x
x

xxh
14

1
cos

14
cos))(cos()( θ  

 

The period of this function would be ππππ
28142

14

1
22 =⋅===

B
P , the circumference 

of the circle.  This makes sense – the wheel completes one full revolution after the 
bicycle has travelled a distance equivalent to the circumference of the wheel. 

 
 
Summarizing our transformations so far: 
 
 
 
 
 

θ 

r 

x 



Section 6.1 Sinusoidal Graphs  245 
 

Definition 
Transformations of sine and cosine 
Given an equation in the form ( ) kBtAtf += sin)(  or ( ) kBtAtf += cos)(  
A is the vertical stretch, and is the amplitude of the function.  

B is the horizontal stretch/compression, and is related to the period, P, by 
B

P
π2=  

k is the vertical shift, determines the midline of the function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example 7 

Determine the midline, amplitude, and period of the function ( ) 12sin3)( += ttf . 
 
The amplitude is 3 

The period is πππ ===
2

22

B
P  

The midline is at 1)( =tg  
 
 
Amplitude, midline, and period, when combined with vertical flips, are enough to allow 
us to write equations for a large number of sinusoidal situations. 
 
 
Try it Now! 

3. If a sinusoidal function starts on the midline at point (0,3), has an amplitude of 2, 
and a period of 4, write an equation with these features. 

  
 
 
 
 
 
 
 

y = k 
A 

A 

P 

P 
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Example 8 
Write an equation for the sinusoidal 
function graphed here. 
 
The graph oscillates from a low of -1 to a 
high of 3, putting the midline at y = 1, 
halfway between. 
 
The amplitude will be 2, the distance from 
the midline to the highest value (or lowest 
value) of the graph. 
 
The period of the graph is 8.  We can measure this from the first peak at x = -2 to the 
second at x = 6.  Since the period is 8, the stretch/compression factor we will use will be 

48

22 πππ ===
P

B  

 
At x = 0, the graph is at the midline value, which tells us the graph can most easily be 
represented as a sine function.  Since the graph then decreases, this must be a vertical 
reflection of the sine function.  Putting this all together, 

 1
4

sin2)( +






−= ttf
π

 

 
 
With these transformations, we are ready to answer the Ferris wheel problem from the 
beginning of the section. 
 
 
Example 9 

The London Eye is a huge Ferris wheel with diameter 135 meters (443 feet) in London, 
England, which completes one rotation every 30 minutes.  Riders board from a platform 
2 meters above the ground.  Express a rider’s height as a function of time. 
 
With a diameter of 135 meters, the wheel has a radius of 67.5 meters.  The height will 
oscillate with amplitude of 67.5 meters above and below the center. 
 
Passengers board 2 meters above ground level, so the center of the wheel must be 
located 67.5 + 2 = 69.5 meters above ground level.  The midline of the oscillation will 
be at 69.5 meters. 
 
The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with 
period of 30 minutes. 
 
Lastly, since the rider boards at the lowest point, the height will start at the smallest 
value and increase, following the shape of a flipped cosine curve. 
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Putting these together: 
Amplitude: 67.5 
Midline: 69.5 

Period: 30, so 
1530

2 ππ ==B   

Shape: -cos 
 
An equation for the rider’s height would be 

5.69
15

cos5.67)( +






−= tth
π

 

 
 
Try it Now 

4. The Ferris wheel at the Puyallup Fair2 has a diameter of about 70 
feet and takes 3 minutes to complete a full rotation.  Passengers 
board from a platform 10 feet above the ground.  Write an 
equation for a rider’s height over time.  

 
 
 
While these transformations are sufficient to represent a majority of situations, 
occasionally we encounter a sinusoidal function that does not have a vertical intercept at 
the lowest point, highest point, or midline.  In these cases, we need to use horizontal 
shifts.  Recall that when the inside of the function is factored, it reveals the horizontal 
shift. 
 
 
Definition 

Horizontal shifts of sine and cosine 
Given an equation in the form ( ) khtBAtf +−= )(sin)(  or ( ) khtBAtf +−= )(cos)(  
h is the horizontal shift of the function 

 
 
Example 10 

Sketch a graph of 






 −=
44

sin3)(
ππ

ttf  

 
To reveal the horizontal shift, we first need to factor inside the function:  








 −= )1(
4

sin3)( ttf
π

 

 

                                                 
2 Photo by photogirl7.1, http://www.flickr.com/photos/kitkaphotogirl/432886205/sizes/z/, CC-BY 
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This graph will have the shape of a sine function, starting at the midline and increasing, 

with an amplitude of 3.  The period of the graph will be 8
4

2

4

22 =⋅===
π

ππ
ππ

B
P .  

Finally, the graph will be shifted to the right by 1.   
 

 
 
 
In some physics and mathematics books, you will hear the horizontal shift referred to as 
phase shift.  In other physics and mathematics books, they would say the phase shift of 

the equation above is 
4

π
, the value in the unfactored form.  Because of this ambiguity, we 

will not use the term phase shift any further. 
 
 
Example 11 

Write an equation for the function graphed here. 
 
With highest value at 1 and lowest value at -5, 
the midline will be halfway between at -2.   
 
The distance from the midline to the highest or 
lowest value gives an amplitude of 3. 
 
The period of the graph is 6, which can be 
measured from the peak at x = 1 to the second 
peak at x = 7, or from the distance between the lowest points.  This gives for our 

equation 
36

22 πππ ===
P

B  

 
For the shape and shift, we have an option.  We could either write this as: 
 A cosine shifted 1 to the right 
 A negative cosine shifted 2 to the left 
 A sine shifted ½ to the left 
 A negative sine shifted 2.5 to the right 
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While any of these would be fine, the cosine shifts are clearer than the sine shifts in this 
case, because they are integer values.  Writing these: 

2)1(
3

cos3)( −






 −= xxy
π

   or 

2)2(
3

cos3)( −






 +−= xxy
π

 

 
Again, these equations are equivalent, so both describe the graph. 

 
 
Try it Now 

5. Write an equation for the function graphed 
here. 

 
 
 
 
 

 
 
 
Important Topics of This Section 

Periodic functions 
Sine & Cosine function from the unit circle 
Domain and Range of Sine & Cosine function 
Sinusoidal functions 
Negative angle identity 
Simplifying expressions 
Transformations 
 Amplitude 
 Midline 
 Period 
 Horizontal shifts 

 
 
Try it Now Answers 

1. 7 
2. -4 

3. ( ) 2sin 3
2

f x x
π = + 
 

 

4. 
2

( ) 35cos 45
3

h t t
π = − + 

 
 

5. Two possibilities: ( ) 4cos ( 3.5) 4
5

f x x
π = − + 
 

 or ( ) 4sin ( 1) 4
5

f x x
π = − + 
 
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Section 6.2 Graphs of the Other Trig Functions 
 
In this section, we will explore the graphs of the other four trigonometric functions.  
We’ll begin with the tangent function.  Recall that in chapter 5 we defined tangent as y/x 
or sine/cosine, so you can think of the tangent as the slope of a line from the origin at the 
given angle.  At an angle of 0, the line would be horizontal with a slope of zero.  As the 
angle increases towards π/2, the slope increases more and more.  At an angle of π/2, the 
line would be vertical and the slope would be undefined.  Immediately past π/2, the line 
would be decreasing and very steep giving a large negative tangent value.  There is a 
break in the function at π/2, where the tangent value jumps from large positive to large 
negative.   
 
We can use these ideas along with the definition of 
tangent to sketch a graph.  Since tangent is defined 
as sine/cosine, we can determine that tangent will 
be zero when sine is zero:  at -π, 0, π, and so on.  
Likewise, tangent will be undefined when cosine is 
zero:  at -π/2, π/2, and so on. 
 
The tangent is positive from 0 to π/2 and π to 3π/2, 
corresponding to quadrants 1 and 3 of the unit 
circle. 
 
Using technology, we can obtain a graph of tangent on a standard grid. 
 
Notice that the graph appears to repeat itself.  For 
any angle on the circle, there is a second angle with 
the same slope and tangent value halfway around the 
circle, so the graph repeats itself with a period of π; 
we can see one continuous cycle from - π/2 to π/2, 
before it jumps & repeats itself.  
  
The graph has vertical asymptotes and the tangent is 
undefined wherever a line at the angle would be 
vertical – at π/2, 3π/2, and so on.  While the domain 
of the function is limited in this way, the range of the 
function is all real numbers. 
 
 
Definition 

The graph of the tangent function )tan()( θθ =m  
The period of the tangent function is π 

The domain of the tangent function is ππθ k+≠
2

, where k is an integer 

The range of the tangent function is all real numbers, ℜ∈x  or ),( +∞−∞  
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With the tangent function, like the sine and cosine functions, horizontal 
stretches/compressions are distinct from vertical stretches/compressions.  The horizontal 
stretch can typically be determined from the period of the graph.  With tangent graphs, it 
is often necessary to solve for a vertical stretch using a point on the graph. 
 
 
Example 1 

Write an equation for the function 
graphed here. 
 
The graph has the shape of a tangent 
function, however the period appears to 
be 8. We can see one full continuous 
cycle from -4 to 4, suggesting a 
horizontal stretch.  To stretch π to 8, the 
input values would have to be 

multiplied by
π
8

.  Since the value in the 

equation to give this stretch is the 
reciprocal, the equation must have form 








= θπθ
8

tan)( af  

We can also think of this the same way we did with sine and cosine.  The period of the 
tangent function is π  but it has been transformed and now it is 8, remember the ratio of 

the “normal period” to the “new period” is 
8

π
and so this becomes the value on the 

inside of the function that tells us how it was horizontally stretched. 
 
To find the vertical stretch a, we can use a point on the graph.  Using the point (2, 2) 








=






 ⋅=
4

tan2
8

tan2
ππ

aa .   Since 1
4

tan =






π
,   a = 2 

 

This graph would have equation 






= θπθ
8

tan2)(f  

 
 
Try it Now 

1. Sketch a graph of 






= θπθ
6

tan3)(f  
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For the graph of secant, we remember the reciprocal identity where 
)cos(

1
)sec(

θ
θ = .   

Notice that the function is undefined when the cosine is 0, leading to a vertical asymptote 
in the graph at π/2, 3π/2, etc.  Since the cosine is always less than one in absolute value, 
the secant, being the reciprocal, will always be greater than one in absolute value.  Using 
technology, we can generate the graph.  The graph of the cosine is shown dashed so you 
can see the relationship. 

)cos(

1
)sec()(

θ
θθ ==f  

 
 

The graph of cosecant is similar.  In fact, since 






 −= θπθ
2

cos)sin( , it follows that 








 −= θπθ
2

sec)csc( , suggesting the cosecant graph is a horizontal shift of the secant 

graph.  This graph will be undefined where sine is 0.  Recall from the unit circle that this 
occurs at 0, π, 2π, etc.  The graph of sine is shown dashed along with the graph of the 
cosecant. 

)sin(

1
)csc()(

θ
θθ ==f  
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Definition 
Graph of secant and cosecant 
The secant and cosecant graphs have period 2π like the sine and cosine functions. 

Secant has domain ππθ k+≠
2

, where k is an integer 

Cosecant has domain πθ k≠ , where k is an integer 
Both secant and cosecant have range of ),1[]1,( ∞∪−−∞  

 
 
Example 2 

Sketch a graph of 1
2

csc2)( +






= θπθf .  What is the domain and range of this 

function? 
 
The basic cosecant graph has vertical asymptotes at the multiples of π.  Because of the 

factor 
2

π
 in the equation, the graph will be compressed by 

π
2

, so the vertical 

asymptotes will be compressed to kk 2
2 =⋅= π
π

θ .  In other words, the graph will have 

vertical asymptotes at the multiples of 2, and the domain will correspondingly be 
k2≠θ , where k is an integer. 

 
The basic sine graph has a range of [-1, 1].  The vertical stretch by 2 will stretch this to 
[-2, 2], and the vertical shift up 1 will shift the range of this function to [-1, 3]. 
 
The basic cosecant graph has a range of ),1[]1,( ∞∪−−∞ . The vertical stretch by 2 will 
stretch this to ),2[]2,( ∞∪−−∞ , and the vertical shift up 1 will shift the range of this 
function to ),3[]1,( ∞∪−−∞  
Sketching a graph, 

 
 
Notice how the graph of the transformed cosecant relates to the graph of 

1
2

sin2)( +






= θπθf  shown dashed. 
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Try it Now 

2. Given the graph 1
2

cos2)( +






= θπθf  

shown, sketch the graph of  

1
2

sec2)( +






= θπθg  on the same axes. 

 
  
 
 

 
 
Finally, we’ll look at the graph of cotangent.  Based on its definition as the ratio of cosine 
to sine, it will be undefined when the sine is zero – at at 0, π, 2π, etc.  The resulting graph 
is similar to that of the tangent.  In fact, it is horizontal flip and shift of the tangent 
function. 

)sin(

)cos(

)tan(

1
)cot()(

θ
θ

θ
θθ ===f  

 
 
 
Definition 

Graph of cotangent 
The cotangent graph has period π 
Cotangent has domain πθ k≠ , where k is an integer 
Cotangent has range of all real numbers,ℜ∈x  or ),( +∞−∞  

 
In 6.1 we determined that the sine function was an odd function and the cosine was an 
even function by observing the graph, establishing the negative angle identities for cosine 
and sine.  Similarily, you may notice that the graph of the tangent function appears to be 
odd.  We can verify this using the negative angle identities for sine and cosine: 

( ) ( )
( )

( )
( ) ( )θ
θ
θ

θ
θθ tan

cos

sin

cos

sin
tan −=−=

−
−=−  
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The secant, like the cosine it is based on, is an even function, while the cosecant, like the 
sine, is an odd function. 
 
 
Identities 

Negative angle identities for tangent, cotangent, secant, and cosecant 
( ) ( )θθ tantan −=−   ( ) ( )θθ cotcot −=−  

 
( ) ( )θθ secsec =−   ( ) ( )θθ csccsc −=−  

 
 
Example 3 

Prove that ( ) 






 −−=
2

cottan
πθθ  

 
( )θtan    Using the definition of tangent 

( )
( )θ
θ

cos

sin=    Using the cofunction identities 








 −








 −
=

θπ

θπ

2
sin

2
cos

  Using the definition of cotangent 








 −= θπ
2

cot   Factoring a negative from the inside 
















 −−=
2

cot
πθ   Using the negative angle identity for cot 








 −−=
2

cot
πθ  

 
 
Important Topics of This Section 

The tangent and cotangent functions 
 Period 
 Domain 
 Range 
The secant and cosecant functions 
 Period 
 Domain 
 Range 
Transformations  
Negative Angle identities 

 



256  Chapter 6 
 

Try it Now Answers 
 

1.  
 
 

2.  
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Section 6.3 Solving Trig Equations 
 
In section 6.1, we determined the height of a rider on the London Eye Ferris wheel could 

be determined by the equation 5.69
15

cos5.67)( +






−= tth
π

.  How long is the rider more 

than 100 meters above ground?  To answer questions like this, we need to be able to 
solve equations involving trig functions. 
 
Solving using known values 
 
In the last chapter, we learned sine and cosine values at commonly encountered angles.  
We can use these to solve sine and cosine equations involving these common angles. 
 
Example 1 

Solve ( )
2

1
sin =t for all possible values of t 

 
Notice this is asking us to identify all angles, t, that have a sine value of ½.  While 
evaluating a function always produces one result, solving can have multiple solutions.  

Two solutions should immediately jump to mind from the last chapter: 
6

π=t  and 

6

5π=t  because they are the common angles on the unit circle. 

 
Looking at a graph confirms that there are more than these two solutions.  While eight 
are seen on this graph, there are an infinite number of solutions! 

 
Remember that any coterminal angle will also have the same sine value, so any angle 
coterminal with these two is also a solution.  Coterminal angles can be found by adding 
full rotations of 2π, so we end up a set of solutions: 

kt ππ
2

6
+=  where k is an integer, and kt ππ

2
6

5 +=  where k is an integer 

 
 
Example 2 

A circle of radius 25  intersects the line x = -5 at two points.  Find the angles θ  on the 
interval πθ 20 <≤ , where the circle and line intersect.  
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The x coordinate of a point on a circle can be found as ( )θcosrx = , so the x coordinate 

of points on this circle would be ( )θcos25=x .  To find where the line x = -5 
intersects the circle, we can solve for where the x value on the circle would be -5 

( )θcos255 =−   Isolating the cosine 

( )θcos
2

1 =−
   Recall that 

2

2

2

1 −=−
, so we are solving 

 

( )
2

2
cos

−=θ    

 
We can recognize this as one of our special cosine values 
from our unit circle, and it corresponds with angles 

4

3πθ =  and 
4

5πθ =  

 
 
Try it Now 

1. Solve ( )tan 1t =  for all possible values of t 

 
 
Example 3 

The depth of water at a dock rises and falls with the tide, following the equation 

7
12

sin4)( +






= ttf
π

, where t is measured in hours after midnight.  A boat requires a 

depth of 9 feet to come to the dock.   At what times will the depth be 9 feet? 
 
To find when the depth is 9 feet, we need to solve when f(t) = 9. 

97
12

sin4 =+







t

π
  Isolating the sine 

2
12

sin4 =







t

π
  Dividing by 4 

2

1

12
sin =








t

π
  We know ( )

2

1
sin =θ  when 

6

5

6

πθπθ == or  

 
While we know what angles have a sine value of ½, because of the horizontal 
stretch/compression, it is less clear how to proceed.  To deal with this, we can make a 

substitution, defining a new temporary variable u to be tu
12

π= , so our equation 

becomes 

( )
2

1
sin =u    
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From earlier, we saw the solutions to this equation were 

ku ππ
2

6
+=  where k is an integer, and  

ku ππ
2

6

5 +=  where k is an integer 

 

Undoing our substitution, we can replace the u in the solutions with tu
12

π=  and solve 

for t.   
 

kt πππ
2

612
+=  where k is an integer, and  kt πππ

2
6

5

12
+=  where k is an integer. 

 
Dividing by π/12, we obtain solutions 
 

kt 242 +=  where k is an integer, and  
kt 2410+=  where k is an integer.  

 
The depth will be 9 feet and boat will be 
able to sail between 2am and 10am.  
 
Notice how in both scenarios, the 24k 
shows how every 24 hours the cycle will 
be repeated. 

 
 

In the previous example, looking back at the original simplified equation 
2

1

12
sin =








t

π
, 

we can use the ratio of the “normal period” to the stretch factor to find the period.  

24
12

2

12

2 =






=







 π
π

π
π

;  notice that the sine function has a period of 24, which is reflected 

in the solutions;  there were two unique solutions on one full cycle of the sine function, 
and additional solutions were found by adding multiples of a full period. 
 
 
Try it Now 

2. Solve ( ) 115sin4 =−t  for all possible values of t 
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The inverse trig functions 
The solutions to ( ) 3.0sin =θ  cannot be expressed in terms of functions we already know.  
To represent the solutions, we need a function that “undoes” the sine function.  What we 
need is an inverse.  Recall that for a one-to-one function, if baf =)( , then an inverse 

function would satisfy abf =− )(1 . 
 
You probably are already recognizing a problem – that the sine, cosine, and tangent 
functions are not one-to-one functions.  To define an inverse of these functions, we will 
need to restrict the domain of these functions to so that they are one-to-one.  We choose a 
domain for each function which includes the angle of zero. 
 

Sine, limited to 




−
2

,
2

ππ
 Cosine, limited to [ ]π,0  Tangent, limited to 




−
2

,
2

ππ
 

         
On these restricted domains, we can define the inverse sine and cosine and tangent 
functions. 
 
Definition 

The inverse sine, cosine and tangent functions 

For angles in the interval 




−
2

,
2

ππ
, if ( ) a=θsin , then ( ) θ=− a1sin  

For angles in the interval [ ]π,0 , if ( ) a=θcos , then ( ) θ=− a1cos  

For angles in the interval 




−
2

,
2

ππ
, if ( ) a=θtan , then ( ) θ=− a1tan  

 

( )a1sin−  has domain [-1, 1] and range 




−
2

,
2

ππ
 

( )1cos a−  has domain [-1, 1] and range [ ]π,0  

( )a1tan−  has domain of all real numbers and range 




−
2

,
2

ππ
 

 
The ( )a1sin−  is sometimes called the arcsine function, and notated ( )aarcsin  

The ( )a1cos−  is sometimes called the arccosine function, and notated ( )aarccos  

The ( )a1tan−  is sometimes called the arctangent function, and notated ( )aarctan  
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( )1sin x−    ( )1cos x−    ( )1tan x−  

   
 
Notice that the output of the inverse functions is an angle. 
 
 
Example 4 

Use the inverse to find one solution to ( ) 8.0sin =θ  
 
Since this is not a known unit circle value, calculating the inverse, ( )8.0sin 1−=θ .  This 
requires a calculator and we must approximate a value for this angle.  If your calculator 
is in degree mode, your calculator will give you a degree angle as the output.  If your 
calculator is in radian mode, your calculator will give you a radian angle as the output.  
In radians, ( ) 929.08.0sin 1 ≈= −θ , or in degrees, ( )1sin 0.8 53.130θ −= ≈ °  

 
 
If you are working with a composed trig function and you are not solving for an angle, 
you will want to ensure that you are working in radians.  Since radians are a unitless 
measure, they don’t intermingle with the result the way degrees would. 
 
Notice that the inverse trig functions do exactly what you would expect of any function – 
for each input they give exactly one output.  While this is necessary for these to be a 
function, it means that to find all the solutions to an equation like ( ) 8.0sin =θ , we need 
to do more than just evaluate the inverse. 
 
 
Example 5 

Find all solutions to ( ) 8.0sin =θ . 
 
We would expect two unique angles on one cycle to have 
this sine value.  In the previous example, we found one 
solution to be ( ) 929.08.0sin 1 ≈= −θ .  To find the other, we 
need to answer the question “what other angle has the same 
sine value as an angle of 0.929?”  On a unit circle, we 
would recognize that the second angle would have the same 
reference angle and reside in the second quadrant.  This 
second angle would be located at 213.2929.0 =−= πθ . 

0.8 

1 

0.929 
θ 
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To find more solutions we recall that angles coterminal with these two would have the 
same sine value, so we can add full cycles of 2π. 
 

kπθ 2929.0 +=  where k is an integer, and kπθ 2213.2 +=  where k is an integer 
 
 
Example 6 

Find all solutions to ( )
9

8
sin −=x  on the interval °<≤° 3600 x  

 
First we will turn our calculator to degree mode.  Using the inverse, we can find a first 

solution °−≈






−= − 734.62
9

8
sin 1x .  While this angle satisfies the equation, it does not 

lie in the domain we are looking for.  To find the angles in the desired domain, we start 
looking for additional solutions.   
 
First, an angle coterminal with °− 734.62 will have the same sine.  By adding a full 
rotation, we can find an angle in the desired domain with the same sine. 

°=°+°−= 266.297360734.62x  
 
There is a second angle in the desired domain that lies in the third quadrant.  Notice that 

°734.62  is the reference angle for all solutions, so this second solution would be 
°734.62  past °180  

°=°+°= 734.242180734.62x  
 
The two solutions on °<≤° 3600 x  are x = °266.297 and x = °734.242  

 
 
Example 7 

Find all solutions to ( ) 3tan =x  on π20 <≤ x  
 
Using the inverse, we can find a first solution ( ) 259.13tan 1 ≈= −x .  Unlike the sine and 
cosine, the tangent function only reaches any output value once per cycle, so there is not 
a second solution on one period of the tangent. 
 
By adding π, a full period of tangent function, we can find a second angle with the same 
tangent value.  If additional solutions were desired, we could continue to add multiples 
of π, so all solutions would take on the form πkx += 259.1 , however we are only 
interested in π20 <≤ x . 

391.4259.1 =+= πx  
 
The two solutions on π20 <≤ x  are x = 1.2597 and x = 4.391 
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Try it Now 
3. Find all solutions to ( )tan 0.7x =  on °<≤° 3600 x  

 
 
Example 8 

Solve ( ) 24cos3 =+t  for all solutions on one cycle, π20 <≤ x  
 

( ) 24cos3 =+t  Isolating the cosine 

( ) 2cos3 −=t  

( )
3

2
cos −=t  

 
Using the inverse, we can find a first solution 

301.2
3

2
cos 1 ≈







−= −t  

 
Thinking back to the circle, the second angle with the same cosine would be located in 
the third quadrant.  Notice that the location of this angle could be represented as 

301.2−=t .  To represent this as a positive angle we could find a coterminal angle by 
adding a full cycle. 

π2301.2 +−=t  = 3.982 
 
The equation has two solutions on one cycle, at t = 2.301 and t = 3.982 

 
 
Example 9 

Solve ( ) 2.03cos =t  for all solutions on two cycles, π40 <≤ x  
 
As before, with a horizontal compression it can be helpful to make a substitution, 

tu 3= .  Making this substitution simplifies the equation to a form we have already 
solved.  

( ) 2.0cos =u  

( ) 369.12.0cos 1 ≈= −u  
 
A second solution on one cycle would be located in the fourth quadrant with the same 
reference angle. 

914.4369.12 =−= πu  
 
In this case, we need all solutions on two cycles, so we need to find the solutions on the 
second cycle.  We can do this by adding a full rotation to the previous two solutions. 

197.112914.4

653.72369.1

=+=
=+=

π
π

u

u
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Undoing the substitution, we obtain our four solutions: 
3t = 1.369, so t = 0.456 
3t = 4.914 so t = 1.638 
3t = 7.653, so t = 2.551 
3t = 11.197, so t = 3.732 

 
 
Try it Now 

4. Solve 03
2

sin5 =+







t

π
 for all solutions on one cycle. π20 <≤ t  

 
 
Definition 

Solving Trig Equations 
1) Isolate the trig function on one side of the equation 
2) Make a substitution for the inside of the sine or cosine 
3) Use the inverse trig functions to find one solution 
4) Use symmetries to find a second solution on one cycle (when a second exists) 
5) Find additional solutions if needed by adding full periods 
6) Undo the substitution  

 
 
We now can return to the question we began the section with. 
 
 
Example 10 

The height of a rider on the London Eye Ferris wheel can be determined by the equation 

5.69
15

cos5.67)( +






−= tth
π

.  How long is the rider more than 100 meters above 

ground?   
 
To find how long the rider is above 100 meters, we first solve for the times at which the 
rider is at a height of 100 meters by solving h(t) = 100. 

5.69
15

cos5.67100 +






−= t
π

  Isolating the cosine 








−= t
15

cos5.675.30
π

 








=
−

t
15

cos
5.67

5.30 π
   We make the substitution tu

15

π=  

)cos(
5.67

5.30
u=

−
   Using the inverse, we find one solution 
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040.2
5.67

5.30
cos 1 ≈









−
= −u    

This angle is in the second quadrant.  A second angle with the same cosine would be 
symmetric in the third quadrant. 

244.4040.22 ≈−= πu  
 
Now we can undo the substitution to solve for t 

040.2
15

=t
π

 so t = 9.740 minutes 

244.4
15

=t
π

 so t = 20.264 minutes 

 
A rider will be at 100 meters after 9.740 minutes, and again after 20.264.  From the 
behavior of the height graph, we know the rider will be above 100 meters between these 
times.  A rider will be above 100 meters for 20.265-9.740 = 10.523 minutes of the ride. 

 
 
Important Topics of This Section 

Solving trig equations using known values 
Using substitution to solve equations 
Inverse trig functions 
 arcsine, arccosine and arctangent 
 Domain restrictions 
 Calculator Techniques 
Finding answers in one cycle or period vs Finding all possible solutions 
Method for solving trig equations 

 
 
Try it Now Answers 

1. 
4

k
π π+  

2. kt
5

2

30

ππ +=         kt
5

2

6

ππ +=      

3. 34.99x = °  or 180 34.99 145.01x = ° − ° = °  
4. 3.590t =  or 2.410t =  
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Section 6.4 Modeling with Trigonometric Equations  
 
Solving right triangles for angles 
In section 5.5, we worked with trigonometry on a right triangle to solve for the sides of a 
triangle given one side and an additional angle.  Using the inverse trig functions, we can 
solve for the angles of a right triangle given two sides. 
 
 
Example 1 

An airplane needs to fly to an airfield located 300 miles east and 200 miles north of its 
current location.  At what heading should the airplane fly?   In other words, if we ignore 
air resistance or wind speed, how many degrees north of east should the airplane fly? 
 
We might begin by drawing a picture and labeling all of 
the known information.  Drawing a triangle, we see we 
are looking for the angle α.  In this triangle, the side 
opposite the angle α is 200 miles and the side adjacent 
is 300 miles.  Since we know the values for the  
opposite and adjacent sides, it makes sense to use the 
tangent function. 

300

200
)tan( =α   Using the inverse, 

588.0
300

200
tan 1 ≈







= −α , or equivalently about 33.7 degrees. 

 
The airplane needs to fly at a heading of 33.7 degrees north of east. 

 
 
Example 2 

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall 
for every 4 feet of ladder length3.  Find the angle the ladder forms with the ground. 
 
For any length of ladder, the base needs to be ¼ of that away from the 
wall.  Equivalently, if the base is a feet from the wall, the ladder can be 4a 
feet long.  Since a is the side adjacent to the angle and 4a is the 
hypotenuse, we use the cosine function. 

4

1

4
)cos( ==

a

aθ   Using the inverse 

 

52.75
4

1
cos 1 ≈







= −θ  degrees 

The ladder forms a 75.52 degree angle with the ground. 

                                                 
3 http://www.osha.gov/SLTC/etools/construction/falls/4ladders.html 

200 

300 
α 

a 

4a 

θ 
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Try it Now 
1. One of the cables that anchor to the center of the London Eye Ferris wheel to the 

ground must be replaced.  The center of the Ferris wheel is 69.5 meters above the 
ground and the second anchor on the ground is 23 meters from the base of the Ferris 
wheel. What is the angle of elevation (from ground up to the center of the Ferris 
wheel) and how long is the cable? 

 
 
Example 3 

In a video game design, a map shows the location of other characters relative to the 
player, who is situated at the origin, and the direction they are facing.  A character 
currently shows on the map at coordinates (-3, 5).  If the player rotates 
counterclockwise by 20 degrees, then the objects in the map will correspondingly rotate 
20 degrees clockwise.  Find the new coordinates of the character. 
 
To rotate the position of the character, we can imagine it 
as a point on a circle, and we will change the angle of 
the point by 20 degrees.  To do so, we first need to find 
the radius of this circle and the original angle. 
 
Drawing a triangle in the circle, we can find the radius 
using Pythagorean Theorem: 

( )2 2 23 5

9 25 34

r

r

− + =

= + =
 

 
To find the angle, we need to decide first if we are going to find the acute angle of the 
triangle, the reference angle, or if we are going to find the angle measured in standard 
position.  While either approach will work, in this case we will do the latter.  Since for 
any point on a circle we know )cos(θrx = , adding our given information we get 

)cos(343 θ=−   

)cos(
34

3 θ=−
 

°≈






 −= − 964.120
34

3
cos 1θ  

While there are two angles that have this cosine value, the angle of 120.964 degrees is 
in the second quadrant as desired, so it is the angle we were looking for. 
 
Rotating the point clockwise by 20 degrees, the angle of the point will decrease to 
100.964 degrees.  We can then evaluate the coordinates of the rotated point 

109.1)964.100cos(34 −≈°=x  
725.5)964.100sin(34 ≈°=y  

 
The coordinates of the character on the rotated map will be (-1.109, 5.725) 
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Modeling with sinusoidal functions 
 
Many modeling situations involve functions that are periodic.  Previously we learned that 
sinusoidal functions are a special type of periodic function.  Problems that involve 
quantities that oscillate can often be modeled by a sine or cosine function and once we 
create a suitable model for the problem we can use the equation and function values to 
answer the question. 
 
 
Example 4 

The hours of daylight in Seattle oscillate from a low of 8.5 hours in January to a high of 
16 hours in July4.  When should you plant a garden if you want to do it during the 
month where there are 14 hours of daylight? 
 
To model this, we first note that the hours of daylight oscillate with a period of 12 
months.  With a low of 8.5 and a high of 16, the midline will be halfway between these 

values, at 25.12
2

5.816 =+
.  The amplitude will be half the difference between the 

highest and lowest values: 75.3
2

5.816 =−
, or equivalently the distance from the 

midline to the high or low value, 16-12.25=3.75.  Letting January be t = 0, the graph 
starts at the lowest value, so it can be modeled as a flipped cosine graph.  Putting this 
together, we get a model: 

25.12
6

cos75.3)( +






−= tth
π

 

-cos(t) represents the flipped cosine,   
3.75 is the amplitude,  
12.25 is the midline,  

6/12/2 ππ = corresponds to the horizontal stretch, found by using the ratio of the 
“original period / new period” 
 
h(t) is our model for hours of day light t months from January.   
 
To find when there will be 14 hours of daylight, we solve h(t) = 14. 
 

25.12
6

cos75.314 +






−= t
π

  Isolating the cosine 








−= t
6

cos75.375.1
π

  Subtracting 12.25 and dividing by -3.75 








=− t
6

cos
75.3

75.1 π
   Using the inverse 

                                                 
4 http://www.mountaineers.org/seattle/climbing/Reference/DaylightHrs.html 
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0563.2
75.3

75.1
cos

6
1 ≈







−= −t
π

  multiplying by the reciprocal 

927.3
6

0563.2 =⋅=
π

t   t=3.927 months past January 

 
There will be 14 hours of daylight 3.927 months into the year, or near the end of April. 
 
While there would be a second time in the year when there are 14 hours of daylight, 
since we are planting a garden, we would want to know the first solution, in spring, so 
we do not need to find the second solution in this case. 
 

 
 
Try it Now 

2. The author’s 
monthly gas usage 
(in therms) is shown 
here.  Find an 
equation to model 
the data.   
 
 

 
 
Example 6 

An object is connected to the wall with a spring that has a 
natural length of 20 cm.  The object is pulled back 8 cm past 
the natural length and released.  The object oscillates 3 times 
per second.  Find an equation for the position of the object 
ignoring the effects of friction.  How much time in each cycle is the object more than 27 
cm from the wall? 
 
If we use the distance from the wall, x, as the desired output, then the object will 
oscillate equally on either side of the spring’s natural length of 20, putting the midline 
of the function at 20 cm.   
 
If we release the object 8 cm past the natural length, the amplitude of the oscillation will 
be 8 cm.   
 
We are beginning at the largest value and so this function can most easily be modeled 
using a cosine function. 
 
Since the object oscillates 3 times per second, it has a frequency of 3 and the period of 
one oscillation is 1/3 of second. Using this we find the horizontal compression using the 

ratios of the periods ππ
6
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Using all this, we can build our model: 
( ) 206cos8)( += ttx π  

 
To find when the object is 27 cm from the wall, we can solve x(t) = 27 

( ) 206cos827 += tπ   Isolating the cosine 

( )tπ6cos87 =  

( )tπ6cos
8

7 =    Using the inverse 

505.0
8

7
cos6 1 ≈







= −tπ   

0268.0
6

505.0 ==
π

t  

 
Based on the shape of the graph, we can 
conclude that the object will spend the first 
0.0268 seconds more than 27 cm from the 
wall.  Based on the symmetry of the function, 
the object will spend another 0.0268 seconds 
more than 27 cm from the wall at the end of 
the cycle.  Altogether, the object spends 
0.0536 seconds each cycle more than 27 cm 
from the wall. 
 

 
 
In some problems, we can use the trigonometric functions to model behaviors more 
complicated than the basic sinusoidal function. 
 
 
Example 7 

A rigid rod with length 10 cm is attached 
to a circle of radius 4cm at point A as 
shown here.  The point B is able to freely 
move along the horizontal axis, driving a 
piston5.  If the wheel rotates 
counterclockwise at 5 revolutions per 
minute, find the location of point B as a 
function of time.  When will the point B 
be 12 cm from the center of the circle? 
 
To find the position of point B, we can begin by finding the coordinates of point A.  
Since it is a point on a circle with radius 4, we can express its coordinates as 

))sin(4),cos(4( θθ .   

                                                 
5 For an animation of this situation, see http://mathdemos.gcsu.edu/mathdemos/sinusoidapp/engine1.gif  

A 

B 
10 cm 

4cm 
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The angular velocity is 5 revolutions per second, or equivalently 10π radians per 
second.  After t seconds, the wheel will rotate by tπθ 10=  radians.  Substituting this, 
we can find the coordinates of A in terms of t.   

))10sin(4),10cos(4( tt ππ  
 
Notice that this is the same value we would have obtained by noticing that the period of 
the rotation is 1/5 of a second and calculating the stretch/compression factor  
 

ππ
10

5
1
2

""

"" =
new

original
. 

 
Now that we have the coordinates of the point 
A, we can relate this to the point B.  By 
drawing a vertical line from A to the 
horizontal axis, we can form a triangle.  The 
height of the triangle is the y coordinate of the 
point A: )10sin(4 tπ .  Using the Pythagorean 
Theorem, we can find the base length of the 
triangle: 

( ) 222 10)10sin(4 =+ btπ  

)10(sin16100 22 tb π−=  

)10(sin16100 2 tb π−=  

 
Looking at the x coordinate of the point A, we can see that the triangle we drew is 
shifted to the right of the y axis by )10cos(4 tπ .  Combining this offset with the length 
of the base of the triangle gives the x coordinate of the point B: 

)10(sin16100)10cos(4)( 2 tttx ππ −+=  

 
To solve for when the point B will be 12 cm from the center of the circle, we need to 
solve x(t) = 12.   

)10(sin16100)10cos(412 2 tt ππ −+=    Isolate the square root 

)10(sin16100)10cos(412 2 tt ππ −=−    Square both sides 

( ) )10(sin16100)10cos(412 22 tt ππ −=−    Expand the left side 

)10(sin16100)10(cos16)10cos(96144 22 ttt πππ −=+−  Move terms of the left 

0)10(sin16)10(cos16)10cos(9644 22 =++− ttt πππ  Factor out 16 

( ) 0)10(sin)10(cos16)10cos(9644 22 =++− ttt πππ  
 
At this point, we can utilize the Pythagorean Identity, which tells us that 

1)10(sin)10(cos 22 =+ tt ππ .   
 

A 
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Using this identity, our equation simplifies to 
 

016)10cos(9644 =+− tπ   Combine the constants and move to the right side 
60)10cos(96 −=− tπ   Divide 

96

60
)10cos( =tπ    Make a substitution 

96

60
)cos( =u  

896.0
96

60
cos 1 ≈







= −u   By symmetry we can find a second solution 

388.5896.02 =−= πu   Undoing the substitution 
896.010 =tπ , so t = 0.0285 
388.510 =tπ , so t = 0.1715 

 
The point B will be 12 cm from the center of the circle after 0.0285 seconds, 0.1715 
seconds, and every 1/5th of a second after each of those values. 

 
 
Important Topics of This Section 

Modeling with trig equations 
Modeling with sinusoidal functions 
Solving right triangles for angles in degrees and radians 

 
 
Try it Now Answers 

1. Angle of elevation for the cable is 71.69 degrees and the cable is 73.21 m long 

2. Approximately ( ) 66cos ( 1) 87
6

G t t
π = − + 
 

  

 


